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Abstract. Magnetic Resonance Elastography (MRE) is a non-invasive
imaging modality quantifying soft tissue stiffness. The reconstruction
of stiffness maps is based on solutions of an inverse problem, which
poses challenges in balancing accuracy, computational resources, and
robustness. To stabilize the reconstruction, many inversion techniques,
and most recently neural network-based inversion techniques, have ex-
plored multifrequency acquisition and reconstruction. However, these
techniques typically perform separate single-frequency inversions followed
by multifrequency aggregation. In this work, we propose a fully multi-
frequency neural network-based inversion trained on synthetically gen-
erated data that directly incorporates the relationship between multifre-
quency acquisitions, assuming a viscoelastic material model. Our pro-
posed approach provides flexibility with respect to the acquisition fre-
quencies, ensuring its practical applicability in the clinical and research
setting. We evaluated our method using finite element simulations and
in vivo abdominal MRE datasets, achieving increased accuracy and pro-
viding a more reliable and effective solution for MRE-based tissue char-
acterization than standard reconstruction approaches.

Keywords: Magnetic resonance elastography - Multifrequency inver-
sion - Deep learning

1 Introduction

Magnetic Resonance Elastography (MRE) is a non-invasive imaging modality
quantifying soft tissue stiffness by imaging the propagation of mechanical waves
through the body [I7]. Tissue stiffness is a key biomarker in many pathological
conditions and is increasingly used in applications such as staging liver fibro-
sis [I4]. The acquisition process involves placing an actuator on the patient
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producing mechanical vibrations that induce acoustic waves (Figure [1]). Motion-
encoding gradients synchronized with the vibrations encode tissue displacements
into the phase of the complex MR signal. This process is repeated to obtain 3D
displacement wavefields at different vibration frequencies [TTI12].

MRE involves solving an inverse problem to reconstruct either the shear
modulus or the shear wave speed (SWS) as a surrogate for tissue stiffness from
acquired wave displacement data (Figure. Solutions to the inverse problem are
ill-posed due to unknown boundary conditions as well as the presence of noise and
compression waves in the acquired wavefields. While a variety of methods have
been developed [45], balancing accuracy, computational cost, and robustness
remains a challenge. Two prominent inversion methods used in research and
clinical practice are local frequency estimation (LFE) [9] and the phase-gradient
inversion method known as k-MDEV [2I]. Both methods are publicly available
for server-based MRE data processing at |https://bioqgic-apps.charite.de| [I3].

In recent years, neural networks have shown promising results in MRE wave
inversion [IB/T920/TOIT63]. A key challenge is the lack of ground truth for train-
ing machine learning models that can translate to clinical practice. To address
this, several studies have explored training on small image patches of syntheti-
cally generated data [I5IT920/T0I3], including TWENN [I0] and ElastoNet [3].
During inference, small image patches are extracted from the acquired image,
iteratively reconstructing it, a strategy that has been shown to generalize well
to in vivo data. Many of these machine learning-based methods rely on multifre-
quency acquisitions to stabilize the inversion process but are trained assuming
single-frequency input data. The predicted stiffness maps for each frequency are
reconstructed separately and then aggregated. Such an approach may not fully
leverage the information available in multifrequency data. We hypothesize that
training a neural network directly on multifrequency data would lead to a more
stable inversion process and, therefore, to more accurate stiffness maps.

In this work, we introduce the first fully multifrequency neural network-
based inversion method in MRE (MF-ElastoNet), which integrates multiple ac-
quisitions at different frequencies as direct inputs to the model. The model is
designed to be flexible in both the number and values of acquired frequencies
to facilitate its use in research and clinical settings. We assume a viscoelastic
material model for the tissue’s frequency response to ensure its applicability to
a wide variety of soft tissue types. We evaluate our method on finite element
method (FEM) simulations and in vivo abdominal datasets, demonstrating the
accuracy and anatomical detail of the SWS maps produced.

2 Method

2.1 Neural network-based wave inversion

Training a neural network to learn the inverse operation of reconstructing the
SWS from the acquired displacement wavefields involved generating a synthetic
dataset of wave displacement and shear wavelength pairs (u, As). The shear
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Fig. 1. MRE acquisition pipeline. A) MRI acquisition using actuators vibrating at a
selected frequency. B) Wavefield acquired through encoding the wave displacements in
the phase of the MR signal. C) SWS (shear wave speed) map obtained following the
wave inversion reconstruction used as a proxy for the tissue stiffness.

wavelength, defined in pixel numbers, served as a proxy for the SWS to ensure
that the data are independent of the image resolution Ar and vibration frequency
f. The relationship is given by ¢ = Ar - f - A, where ¢ is the SWS. For a
multifrequency acquisition with N frequencies, we have Ay = (A1, ..., Ax). The
following minimization problem was then solved:

W = argmin D(\s, G(u, W)) (1)
W

where D(-,-) is the cost function to be minimized by the neural network
G(u, W) parameterized by weights W [g].

2.2 Training data generation

We used a linear isotropic viscoelastic material model to represent biological
soft tissue [I8/7], assuming local homogeneity [IBJI0J3]. Small patches of wave
images were generated for each frequency and displacement component acquisi-
tion with the complex wave displacement u at a given location r expressed as a
superposition of shear waves, compression waves, and noise:

2 s 1

u (’I") = i Qs eii<( Xsj '35 )n(d’0’¢)'rj+d)sj)
j=1

(2)
Ne : 2r _: 1
+ Z acj 671((ijlrj)’n(d,e,%)-rj*Hﬁcj) + 7] (7’)
=1

where as, ac, ¢s, and ¢. are the amplitudes and phases of the shear and
compression waves. Ny and N, are the numbers of superimposed shear and com-
pression wave sources in 3D space. n is the normal vector for each point source in
polar coordinates (d, 0, ). As, Ac, ds, and d. are the wavelengths and penetration
lengths of the shear and compression waves in pixel numbers. 7 (7) is zero-mean
Gaussian noise applied to the real and imaginary parts of the wavefield. The
parameter ranges were chosen as in [3].
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Fig.2. A) Neural network training: Multifrequency and multicomponent complex-
valued 4x4 wave displacement patches and associated shear wavelength pairs are syn-
thetically generated for training. In the multi-head attention blocks, d is the embedded
dimension, h the number of heads, and n the number of blocks. In the feed-forward
blocks, d is the number of features and n the number of blocks. B) Inference: 4x4
patches are extracted from the real and imaginary parts of the acquired wavefield for
every frequency and component, reconstructing the SWS (shear wave speed) maps.

2.3 Multifrequency modeling

Several conditions were set to model the tissue’s frequency response while en-
suring the applicability of the method to a wide variety of acquisition protocols
and tissue types.

Number of acquired frequencies. This number is unknown a priori and
can vary significantly depending on the imaging protocol. To capture the vast
majority of clinical and research use cases, the number of acquisition frequencies
was uniformly sampled between one and ten for each sample.

Material model assumptions. We assumed that the target material follows
a linear isotropic viscoelastic model, which captures the mechanical behavior
of a wide variety of soft biological tissues [7]. The SWS in such tissues has
been widely observed to exhibit a power-law dependence on frequency, given
by ¢  f2 with 0 < a < 1, where the extremes correspond to ideal elastic and
viscous behaviors, respectively[I8J7]. For oo = 0, ¢ is constant, and the wavelength
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follows A(f) = G- Fora=1, c(f) o< v/f, and the wavelength follows A(f) o %
This formulation allowed us to constrain the generated wavelengths based only
on the ratios between acquired frequencies and not specific values.

1. Wavelength constraint: We assumed N acquisition frequencies and that the
associated wavelengths fall within a training range [Amin, Amax]- For a given
acquisition n, we constrained the corresponding wavelength such that:

vn S [lvN]a)\mln S A1 S )\n S )\N S )\max (3)

2. Power-law constraint: From the material model, we derived constraints on
the wavelengths and on the distance between the wavelengths associated to
neighboring acquisition frequencies for the synthetic data generation:

VTLE [LN]v)\min\/;»:LS)\n S)\max“% (4)

vn S [17N - 1}7Amin < f”’b - 1> S )\n+1 - An S A1rr1ax ( fn - 1) (5)

fn+1 fn+1

3. Penetration length constraint: To ensure physically plausible data, the pen-
etration length ¢ associated to a given wavelength A must follow:

A

6 < —
- 27

(6)

Acquisition frequencies. The acquisition frequencies used in MRE vary de-
pending on the application. In human applications, frequencies generally range
from 5 to 100 Hz, with a step size of 5 or 10 Hz. In research protocols, partic-
ularly in small animals, acquisitions extend to frequencies in the range of 1000
Hz with step sizes of 100 Hz.

The multifrequency material model detailed above only sets constraints based
on the relative ratios of the frequencies rather than their absolute values. There-
fore, the training dataset was generated to cover a range of frequency ratios from
0.5 to 0.95 instead of specific frequencies, ensuring the applicability of the model
across various acquisition protocols.

2.4 Neural network architecture

Each input to the neural network consisted of 4 x4 complex-valued wave patches,
with the real and imaginary parts stacked as channels for the three displacement
components and each acquisition frequency. The complex-valued patches were
normalized by the average of their modulus.

The neural network architecture, displayed in Figure[2] followed a three-step
hierarchical structure, each consisting of a vision transformer processing informa-
tion at the spatial, displacement components, and frequency levels. In the spatial



6 H. Bustin et al.

feature extraction block, attention was applied along the stacked pixel dimension.
In the multicomponent fusion block, it was applied along the displacement direc-
tion dimension. In the multifrequency fusion block, the frequency dimension was
padded to the maximum size of ten acquisition frequencies, accommodating the
variable input size. Attention was then applied along the frequency dimension,
with masking corresponding to the padding.

A feed-forward block followed the multi-head attention layer in the spatial
feature extraction and multifrequency fusion blocks. It consisted respectively of
five and two feed-forward layers interspersed with layer normalization.

The GeLU activation function was used throughout the network, and Softplus
was used as output activation to ensure physically realistic values.

2.5 Image reconstruction

For each acquired frequency and displacement component, 4x4 patches were
extracted from the acquired wavefield. The corresponding estimated SWS ¢ was
then reconstructed from the estimated shear wavelength A in pixel numbers
using the trained model:

e=Ar-f-A=Ar-f-Gu,W) (7)

All reconstructed values were assembled to form the final SWS map. The
training and inference reconstruction processes are illustrated in Figure 2]

3 Experiments

3.1 Setup

Data. All datasets used are publicly available on the open-access MRE platform
https://biogic-apps.charite.de. To test our method, we used numerical FEM
simulation datasets of a box with four stiff inclusions of decreasing sizes, at
excitation frequencies 50, 60, 70, 80, 90, and 100 Hz with a 1 mm isotropic
resolution [2] and of an abdomen at the excitation frequencies 30, 36, 42, and
48 Hz with a 2 mm isotropic resolution [I]. We also used an in vivo abdomen
dataset acquired at 30, 40, and 50 Hz with a 2.7x2.7x5 mm? voxel size [6] and
in vivo kidney datasets consisting of 23 subjects acquired at 40, 50, 60, and 70
Hz and 2.5 mm isotropic resolution [I3].

Implementation details. Our model was trained for 500,000 epochs on a single
A-100 GPU, with training data generated on the fly using a batch size of 2048.
The total number of training samples generated corresponds to the product of
the batch size and the number of epochs. We used the Adam optimizer with a
learning rate of 0.0001. We implemented the code using the PyTorch library.
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Table 1. Comparison of the RMSE (root mean square error) in m/s for LFE, k-MDEV,
TWENN, ElastoNet, and MF-ElastoNet in the FEM datasets in the ROIs (regions of
interest).

Classical inversions Neural network inversions

Dataset ROI LFE k-MDEV  TWENN ElastoNet MF-ElastoNet
inclusions 1.60 0.42 0.66 0.43 0.38
FEM box matrix 0.26 0.27 0.85 0.43 0.26
liver 0.21 0.27 0.28 0.19 0.13
FEM abdomen pancreas 0.39 0.38 0.42 0.34 0.27
spleen 0.15 0.35 0.38 0.26 0.19

Baseline. We compared MF-ElastoNet with several state-of-the-art MRE wave
inversion methods: the established classical inversion methods LFE [9] and k-
MDEYV |[21] currently used in research and clinical practice, and the recent neural
network-based methods TWENN [I0] and ElastoNet [3]. These methods all rely
on different training protocols, inference pipelines, and algorithm choices, these
design differences must be considered when comparing them.

Metrics. For the FEM datasets, where a ground truth was present, we quan-
tified the performance of the compared methods using the root mean square
error (RMSE). For the in vivo datasets, where no ground truth was present, we
assessed the mean and standard deviation of the regions of interest (ROISs).

3.2 Results

FEM datasets. The simulated wavefield, ground truth, and reconstructed SWS
maps for our method compared to the baseline methods are displayed in Figure
[l for the FEM box and FEM abdomen datasets. The RMSE in the ROIs are
summarized in Table [I] MF-ElastoNet achieved improved accuracy, compared
to the baseline methods and particularly with respect to the single-frequency
trained neural network-based methods.

Wavefield

Ground truth k-MDEV ElastoNet  MF-ElastoNet 35
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Fig. 3. Comparison of the simulated wavefield, ground truth, and predicted SWS
(shear wave speed) maps produced by LFE, k-MDEV, TWENN;, ElastoNet, and MF-
ElastoNet for the FEM box and abdomen datasets.
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Fig. 4. Comparison of magnitude, wavefield, and predicted SWS (shear wave speed)
maps produced by LFE, k-MDEV, TWENN, ElastoNet, and MF-ElastoNet for in
vivo data: liver & spleen (liver: blue, spleen: orange) and kidneys (inner cortex: blue,
medulla: red, outer cortex: orange, parenchyma: green).

Table 2. Comparison of the SWS (shear wave speed) mean + standard deviation in m/s
of LFE, k-MDEV, TWENN, ElastoNet, and MF-ElastoNet for the in vivo abdomen
datasets in the ROIs (regions of interest).

Classical inversions Neural network inversions

Dataset ROI LFE k-MDEV  TWENN ElastoNet MF-ElastoNet
Liver & liver 1.54 £ 0.15 1.33 & 0.30 1.25 £ 0.22 1.37 & 0.18 1.36 = 0.20
spleen spleen 2.02 + 0.17 2.01 £ 0.49 1.10 4+ 0.13 1.90 £+ 0.36 1.87 4 0.30
inner cortex 1.24 4+ 0.07 1.91 £ 0.16 0.87 & 0.10 1.70 &£ 0.11 1.69 £ 0.16

medulla  1.19 £ 0.07 1.52 £ 0.17 0.92 £ 0.11 1.49 £ 0.13 1.40 & 0.10
outer cortex 1.09 £+ 0.07 1.49 + 0.13 0.90 £ 0.11 1.17 £ 0.08 1.35 £ 0.08
parenchyma 1.17 £+ 0.06 1.56 £+ 0.14 0.92 £+ 0.12 1.40 + 0.11 1.44 £+ 0.11

Kidneys

In vivo datasets. The acquired magnitude and wavefield images, as well as
the reconstructed SWS maps for our method compared to the baseline methods,
are displayed in Figure [4] for the in vivo datasets. MF-ElastoNet showed quali-
tatively good anatomical detail in the reconstructed SWS maps comparable to
established classical inversion methods LFE and k-MDEV. Table [2| reports the
mean =+ standard deviation of the liver and spleen across the ROI in the liver &
spleen dataset and the inner cortex, outer cortex, medulla, and parenchyma of
the kidneys across subjects in the kidneys dataset.

Ablation study. We performed an ablation study to demonstrate the effec-
tiveness of multifrequency training, maintaining all other training parameters
unchanged. In Table [3] we report the RMSE for multifrequency training and
single-frequency training with a posteriori combination for the FEM datasets.
The multifrequency combination yielded a lower RMSE in the FEM datasets.

4 Discussion and Conclusion

In this paper, we proposed a fully multifrequency neural network-based wave
inversion method for MRE (MF-ElastoNet). The learned multifrequency combi-
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Table 3. Ablation study on multifrequency training. RMSE (root mean square error)
in m/s in the FEM datasets in the ROIs (regions of interest).

Dataset FEM box FEM abdomen
ROI inclusions matrix liver pancreas spleen
Single-frequency 0.38 0.38 0.15 0.29 0.19
Multifrequency 0.38 0.34 0.13 0.27 0.19

nation stabilizes the inversion, showing increased accuracy and good anatomical
detail compared to single-frequency neural network-based inversions [T0J3] and
established classical inversion methods [9J2]. Being flexible in terms of acquisi-
tion frequencies and resolution, it is designed to be suitable irrespective of the
MRE protocol. While our method focuses on SWS reconstruction, further devel-
opments may include the calculation of other mechanical parameters, such as the
penetration rate, the incorporation of heterogeneity within training patches, and
uncertainty quantification. MF-ElastoNet expands on existing neural network-
based inversion methods toward their use in research and clinical applications.
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