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Abstract. Multiple Instance Learning (MIL) has advanced WSI analy-
sis but struggles with the complexity and heterogeneity of WSIs. Exist-
ing MIL methods face challenges in aggregating diverse patch informa-
tion into robust WSI representations. While ViTs and clustering-based
approaches show promise, they are computationally intensive and fail
to capture task-specific and slide-specific variability. To address these
limitations, we propose PTCMIL, a novel Prompt Token Clustering-
based ViT for MIL aggregation. By introducing learnable prompt tokens
into the ViT backbone, PTCMIL unifies clustering and prediction tasks
in an end-to-end manner. It dynamically aligns clustering with down-
stream tasks, using projection-based clustering tailored to each WSI, re-
ducing complexity while preserving patch heterogeneity. Through token
merging and prototype-based pooling, PTCMIL efficiently captures task-
relevant patterns. Extensive experiments on eight datasets demonstrate
its superior performance in classification and survival analysis tasks, out-
performing state-of-the-art methods. Systematic ablation studies con-
firm its robustness and strong interpretability. The code is released at
https://github.com/ubc-tea/PTCMIL.

Keywords: Multiple Instance Learning - Prompt Learning - Clustering.

1 Introduction

Histopathology is the gold standard for cancer diagnosis, essential for tumor
detection, subtyping, and survival prediction. With advancements in deep learn-
ing, digital pathology, which analyzes whole slide images (WSIs), has gained
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prominence [1,2,3]. WSIs are massive giga-pixel images that require computa-
tionally efficient processing, typically through multiple instance learning (MIL),
which enables slide-level annotation without patch-level labels. However, WSIs
exhibit significant inherent heterogeneity, containing diverse cell types and tissue
structures with varying morphological and staining characteristics [4,9]. A key
challenge in MIL is aggregating redundant patch information into robust WSI
representations. Early MIL approaches treated patches independently, neglecting
interactions, but recent methods leverage patch relationships for improved mod-
eling [17,4]. The introduction of Vision Transformers (ViTs) [17,23] has enhanced
global dependency modeling through self-attention. Despite their effectiveness,
ViTs face computational bottlenecks and overfitting issues, limiting their scala-
bility in MIL applications [25].

To address above issues and handle the vast diversity of patches within
each WSI, recent methods incorporate clustering techniques to identify rep-
resentative prototypes, thereby enhancing WSI representations [24,18]. These
approaches typically follow a two-stage process [18]: (1) unsupervised cluster-
ing groups patches into prototypes, often leveraging global clustering across all
patches, and (2) a pooling model trains on these prototypes for prediction over
each WSI. While effective in capturing shared patterns, these methods face key
limitations: (i) standalone clustering is not optimized for downstream tasks, po-
tentially missing task-specific features, (ii) global clustering is computationally
expensive, requiring patch sampling that may omit critical regions, and (iii) uni-
form centroids across WSIs fail to account for slide-specific variability, reducing
adaptability. These challenges lead to our research question: How can we opti-
mize patch clustering alongside WSI-level analysis efficiently and effectively?

Visual Prompting (VP) [12], adapted from natural language processing, en-
ables ViTs to focus on specific tasks without extensive retraining. Prior work
[21] highlights that learnable prompt tokens enhance flexibility and efficiency
across visual tasks. To address our research question, we propose PTCMIL,
a Prompt Token Clustering-based ViT for MIL aggregation, integrating clus-
tering, prototyping, and downstream tasks in an end-to-end manner. Unlike
traditional two-stage clustering methods, PTCMIL introduces prompt tokens to
dynamically guide task-relevant clustering, capturing WSI patch heterogeneity
while optimizing WSI-level analysis. We introduce projection-based clustering
tailored to each WSI, reducing complexity compared to global clustering [1§]
while adding minimal parameters. PTCMIL improves prototype representations
and WSI prediction. Our contributions are: (1) an end-to-end framework dy-
namically aligning clustering for prototyping with WSI-level analysis to enhance
feature relevance for downstream tasks and improving performance and inter-
pretability, (2) efficient token clustering using prompt tokens and projection-
based merging tailored to each WSI, preserving heterogeneity while reducing
complexity, and (3) extensive experiments demonstrating effectiveness across
multiple WSI tasks, with systematic ablations validating design robustness.
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2 Methodology

This section introduces the overall pipeline of our method, which can simulta-
neously learn downstream task-related prototypes of WSI during the training
(Fig. 1). The architecture of our PTCMIL consists of three parts: 1) Learnable
prompt token-based clustering; 2) Prototype merging over clusters; 3) Pooling
over prototypes to get the WSI representation for different downstream tasks.

2.1 Learnable Prompt Token-based Clustering

PTCMIL builds on the ViT-based MIL aggregation. The introduced learnable
prompts ( A in Fig. 1) are appended alongside patch tokens ( patch feature and
represented as Il in Fig. 1) and class tokens (represented as @ in Fig. 1) as the
inputs of the ViT base model®. Denote N as the number of patches of the given
WSI. Denote C' as the desired number of clusters, a hyperparameters in our
pipeline, and we have C < N. We represent the token embeddings of prompts,
patches, and class tokens after the linear embedding layer (blue block in Fig. 1)
as Po = [p},- - ,p§] € RE*P Eg = [e},--,el] € RV*P and cls € RP.

These tokens are fed into a global Transformer layer ( block in Fig. 1)
to enhance contextual understanding of the global (WSI-level) information and
improved feature representation :

[cls1, P1,Eq] = faiobai([cls, Po, Eq)), (1)

where [cls1, Py, Eq] are the output of the global Transformer layer faobal-
Prompt-based Clustering. With the refined prompt token embeddings P,
and E1, we dynamically group patches based on their distance to the C' prompt
embeddings via projection. The previous token clustering methods in ViT for
image tasks [15,26] cluster tokens based on their pairwise similarities. However,
these approaches become impractical in WSI settings, where the number of im-
age tokens can exceed ten thousands in our cases, making the computation of
pairwise distances prohibitively expensive due to high computational costs and
resource constraints. To address this challenge, we introduce a novel approach
leveraging learnable prompt tokens, each associated with a cluster as a proxy,
for efficient clustering by projecting patch tokens onto the prompt tokens. We
define an assignment matrix A € RV*C where each row corresponds to a patch
token and each column to a cluster. The entry A¢ indicates the probability that
the i-th patch token belongs to cluster ¢ and is calculated follows:

A¢ €<E§-’P?> (2)
T RCeE R

where (-, -) is the inner product, E; is the output of token feature after the global
Transformer layer’s self-attention module.

§ We keep the class token following general VPT design [12].
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Fig. 1: Overview of PTCMIL. (a) Overall framework, with patch feature tokens,
prompt tokens and class token as input, and the objective prediction goal as
output; (b) Interpretation of clustering and prototyping based on the clusters;
(c) Interpretation of the relationship between prototypes and prompt tokens.

Prompt Updating. Xavier uniform initialization [8] is used to randomly ini-
tialize C' uniform prompt tokens Py € RE*P to prevent clustering collapse.
Then, the Gram-Schmidt process ensures orthogonality for ¢ € [C]u; = X;. —

i—1 <llj,X7;.> . R u; _ .
ijl ) u;,Po;. = ol where X = [Xy,---,X¢] is a set of randomly
initialized vectors with Xavier uniform initialization and u = [uy,--- ,u¢] is

a set of orthonormal vectors. Furthermore, we introduce a soft constraint as
the regularization loss function to prevent prompt collapse across clusters dur-
ing training, in addition to updates based on the downstream task loss (see
Sec. 2.3). Explicitly, we minimize the difference between PTP; and the identity
matrix I:

Licg = |PTPy — 1|5 (3)

In the MIL problem, the batch size is typically set to 1 due to memory limits to
process vast amount patches in each WSI. To facilitate stable prompt updating,
we utilize moving average strategy to update prompts: Py, = 9151(m,1) +(1-
0)P1.,, where m is the number of steps in one epoch, § € [0,1] is the decay
factor that controls how fast the prompts are updated, and P indicate the aver-
aged prompt over iterations. This approach smooths out prompt updates across
batches, reducing sensitivity to individual slide differences.

2.2 Merging to Obtain Prototypes over Clusters
Next, we aim to learn the prototypes in each cluster. According to the assignment

matrix obtained in Eq. (2), we have cluster index vector a = argmax(A;.) =
[a1,az,...,axn]T, for i € [C]. With a, we conduct cluster-wise re-index to patch
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tokens and get H = [Hy,Hs,...,H¢], where H; is the concatenation of fea-
tures in cluster i. The tokens in each cluster are another local Transformer layer
(denoted as fiocal With output dimension d, shown as purple blocks in Fig. 1,
parameters shared for efficiency) to learn cluster-wise local context:

[I_)saHg] :flocal([f)iaHﬂ)a c= 1a25"'a0' (4>

where p§ € R4, HS € RY:*? are the output from the cth Transformer for cluster
1, which contains N¢ patches.

To reduce redundancy before passing it to the pooling module, clustering-
based MIL methods summarize representative information from each cluster as
prototypes. In clustering task, centroid of the data in the cluster is commonly used
as prototype that provide good approximation of the entire cluster [11]. Although
we introduce learned prompts as proxies for clusters to enable efficient, learnable
clustering, using po as a candidate to represent clusters may deviate significantly
from the actual cluster centers in practice (as illustrated in Fig. 1(b)). To address
this, we propose to calculate the centroid among token embeddings HS via merg-
ing to represent prototypes (represented as the block in Fig. 1). Addition-
ally, following [16], we introduce learnable weights r; = [rq,...,ry]T € RN,
for ¢ € [C], to explicitly represent the averaging weights of the patch token fea-
tures. Hence, the prototype hf, for cluster 7 is written as via weighted averaging:

iewe €7h _ pa 1 c
h%:W eR ,andwehaver:[hP,-c- ,hp}.

2.3 Global Pooling for Downstream Tasks

Focusing on the most common WSI analysis tasks: classification and survival
analysis, we detail the pooling module for these downstream applications.
Classification. Due to the heterogeneity of contents in WSI, it is not suitable to
only use a single class token to summarize the information over the whole WSI
[5]. With the help of prototypes, we can get better slide-level representation,
Hfna = [clsy, Hp], and the final prediction of WSI is Yy = Pooling(Hgpa)-
Specifically, the pooling here includes mean operation over Hg,, and a linear
layer. To this end, the overall objective function for classification is:

L= Leja + aLveg = CE(Y,Y) + a|PTP — 1|5, (5)

where Y is the prediction of WSI, « is the regularization loss term weight.

Survival Analysis. The survival analysis model is used to predict the survival
P(t<T<t4dt|T>t)

hazard score, which can be formulated by fhazara (T =t) = lim 5

ot—0
= A\g(t)ePHsnalwhich measure the probability of patient death instantaneously
at t, and [ is the parameters of the last linear prediction layer. In training with
WSIs, we follow [7] to construct weak supervision of transforming the continuous
observation time to discrete time intervals: T = 7, if T} cont € [tr,tr11) for r €
{0,1,2,3}, where j is the patient index, T}, cont is the continuous event time. For
a given patient with bag-level feature Hgy,), the hazard function can be defined
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as: fhazard (7‘ | Hﬁnalj) =P (T] =r|T; >, Hﬁna]j) and the survival function is

fsurv (T | Hﬁnalj) =P (1} >r | Hﬁnalj) - HZ:]_ (1 - fhazard (U | hﬁnal J)) . The
loss is log likelihood function of survival is:

Lsurv - _Cj log (fsurv()/j ‘ Hﬁnal,j)) - (1 - Cj) IOg (fsurv(y} -1 | Hﬁnal,j))
— (1= ¢j)log (fnazard (Y | Henalj)) » (6)

where ¢; is the binary censorship status, ¢; = 1 means the patient live longer
than the follow-up period, ¢; = 0 means the patient passed away within time 77.
Similar to Eq (5), we add Lyeg t0 Leurv as the total loss for survival prediction.

3 Experiment

3.1 Dataset

Classification. We evaluate PTCMIL on Camelyonl16 (2-class) [1], TCGA-Non-
Small Cell Lung Cancer (NSCLC) (2-class) [3], Prostate cANcer graDe Assess-
ment (PANDA) (6-class) [2] and an in-house prostate WSI dataset (1-class).
Camelyonl6 is for detecting metastases (abnormal) (129) or normal (270) in
breast cancer, TCGA-NSCLC is for subtyping the subtypes LUAD (538) and
LUSC (512) of lung cancer. and PANDA is for grading Prostate cancer diagnosis
(10,616). For Camelyonl16 and TCGA-NSCLC, we follow [14] to split the train-
ing, validation and testing sets and use five-fold validation to report the result.
For PANDA, we use the data splits of the challenge. To evaluate the adaptability
of our method, we use the in-house prostate WSI dataset (749 cancerous slides)
for testing with the model trained on PANDA.

Survival Analysis. We evaluate the survival prediction performance on Breast
Invasive Carcinoma (BRCA) (1,041), Colon and Rectum Adenocarcinoma (CRC)
(575), Bladder Urothelial Carcinoma (BLCA) (437) and Lung adenocarcinoma
(LUAD) (519) from [3]. We follow [19] to use 5-fold site-stratified cross-validation.

3.2 Implementation and Evaluation

We use CTransPath [22] and UNI [6] to extract patch feature with CLAM’s
toolbox [14] to crop non-overlapping 256 x 256 (20x) patches. We use Adam
for our model and keep the original optimizers for baselines. Cosine scheduler is
used with a starting learning rate of 2e-4. The weight decay is set to le-5. The
regularization loss weight « is 0.1 for Camelyon16 and PANDA, 0.2 for all TCGA
datasets, decay factor 8 is 0.9 for all. The numbers of clusters for Camelyon16,
TCGA and PANDA are 7, 5 and 5 respectively. For the cancer normal/abnormal
and subtype classification tasks, we report accuracy and AUC, presenting mean
and standard deviation. For PANDA, we report Cohen’s kappa. For the in-house
dataset that contains only one class, we use accuracy. We report the concordance
index (c-index) for survival prediction.
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Table 1: Classification result on four datasets. (f: We use the reported result from
the original paper.)

PANDA —
Feature Camelyonl6 TCGA-NSCLC PANDA in-house
. Method
extraction prostate dataset

AUC Acc AUC Acc  |Cohen’s K Acc

ABMIL (NeurIPS’18) [10] 92.404.17 90.311.80 | 95.611.88 89.812.60 0.892 85.81

DSMIL (CVPR ’21) [13] 93.262.83 87.031.18 | 96.790.04 90.872.02 | 0.900 87.28

CLAM (Nat. Biomed. Eng. '21) [14]| 95.892.45 92.191.01 | 97.130.83 91.601.36 0.915 86.75
DTFD-MIL (CVPR22) [27] 94.931.320 92.813.09 | 97.240.43 91.021.72 | 0.913 87.00
CTransPath TransMIL (NeurIPS’22) [17] 96.471.12 93.132.56 | 96.670.87 90.720.74 | 0.897 84.34
s ILRA (ICLR’23) [23] 94.292.80  90.782.02 | 96.330.67 90.191.07 | 0.928 84.07
PANTHER (CVPR24) [19] 67.014.70 64.196.01 | 93.390.88 91.642.30 | 0.720 81.52
MambaMIL(MICCAD'24) [25] 92.31157 91.09151 | 96.85110 91.850.60 | 0.902 87.15
DGR-MIL (ECCV’24) [28] 91.257.15 90.063.60 | 96.131.17 89.511.56 | 0.894 87.82

PTCMIL (ours) 98.060.90 94.731.33|97.310.67 92.171.80| 0.928 89.96

ABMIL (NeurIPS’18) [10] 98.420.67 95.732.02 | 97.720.55 92.301.55 0.935 84.74

DSMIL (CVPR "21) [13] 98.751.08 97.501.02 | 97.560.60 93.431.30 | 0.857 84.61

CLAM (Nat. Biomed. Eng. '21) [14]| 98.920.s2 97.970.43 | 98.110.46 93.210.75 0.933 86.75
DTFD-MIL (CVPR22) [27] 98.380.74 96.562.38 | 97.890.55 92.231.66 0.911 84.74

UNi | TransMIL (NeurIPS'22) [17] 99.080.74 95.313.95 | 98.200.30 93.580.50 | 0.936 89.56
ILRA (ICLR’23) [23] 94.385.48 93.444.51 | 96.720.71  90.041.64 0.924 89.29
PANTHER (CVPR24) [19] 84.216.02 79.19.02 | 97.82067 91.92166 | 0.9231 87.42
MambaMIL (MICCAI'24) [25] 99.060.77 97.971.06 | 97.960.97 92.681.27 | 0.929 86.61
DGR-MIL (ECCV’24) [28] 98.542.03 97.350.89 | 97.540.52 92.301.57 | 0.915 89.69

PTCMIL (ours) 99.600.34 98.600.35|98.440.39 93.811.02| 0.937 92.64

3.3 Comparison with Baselines

Classification and Survival Analysis. Tables 1 shows the result ofclassifica-
tion on Camelyon16 (abnormal detection), TCGA-NSCLC (subtyping), PANDA
(grading), and in-house prostate (adaptation) datasets. We also conduct survival
prediction analysis on four TCGA datasets in Table 2. PTCMIL consistently
demonstrates high performance, highlighting the end-to-end integration of clus-
tering enables optimal WSI representation learning for various downstream task.

Adaptability. We explore few-shot (20 random WSIs with balanced labels)
domain adaptation using limited WSIs to transfer learned prompt tokens to
new tasks. We only update the classifier and prototypes (if have). Table 3 shows
that a small number of prompt tokens enable effective cross-domain adaptation.
This is promising for resource-constrained scenarios with limited training data,
highlighting PTCMIL’s adaptability and robustness across varied domains.

3.4 Visualization and Interpretation

Fig. 2 shows (a) WSI clustering maps, cluster assignment bar plots and exam-
ple patches in each cluster (b) comparison to PANTHER [18]. In details, most
patches in c0 are related to tumor cells that are irregular in shape, with enlarged,
darkly stained nuclei and often disordered arrangement, showing high mitotic
activity. ¢l are mainly tumor cells, which are characterized by irregular shapes,
enlarged nuclei, disordered arrangements. Lung alveoli (c2) are thin-walled sacs
primarily lined by flattened type I cells and cuboidal type II cells. The stroma
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Table 2: Survival analysis (c-index). Table 3: Few-shot adaptation (%).
Method | LUAD | BLCA | BRCA | CRC Pretrained on TCGA-NSCLC Camelyon16
y Fewshot on Camelyonl6 TCGA-NSCLC
DSMIL [13] | 0.6590.07 | 0.5860.06 | 0.7200.06 | 0.6960.11 0C Ace 0C oo
CLAM [14] | 0.6250.12 | 0.6030.06 | 0.6980.03 | 0.6780.09
DTED-MIL [27]| 0.6370.0s | 0.6090.0s | 0.6930.05 | 0.6970.09 DSMIL [13] | 65.57s.51 62.976.76 | 83.886.74 75.476.15

CLAM [14] 62.0410.63 61.41412 | 84.725.36 76.085.15
DTFD-MIL [27]| 66.475.59 83.516.61 66.87s.70
TransMIL [17] | 57.286.14 66.0010.50 61.369.54

TransMIL [17] | 0.6600.12 | 0.6160.0s | 0.7080.05 | 0.6860.06

ILRA [23] 0.6880.06 | 0.6030.04 | 0.7260.08 | 0.7040.00
PANTHER [19] | 0.6320.07 | 0.6120.07 | 0.7290.08 | 0.6320.14 ILRA [20] | 50.1512.50 53.7310.79 53.466.96
MambaMIL [25]| 0.6700.0s | 0.6060.04 | 0.6680.05 | 0.6800.06 MambaMIL [25]| 65451014 65.317.17 | 83.935.71 75.624.45
DGR-MIL [28] | 0.6740.05 | 0.6080.04 | 0.6580.05 | 0.7000.09 DGR-MIL [28] | 55.84120 62.03105 | 54.005.41 5109577
PTCMIL (ours) |0.6880.09|0.6300.05|0.7450.04|0.7380.09 PTCMIL (ours) |69.4910.27 67.0310.53|85.733.42 77.363.80

(a) Clustering maps, cluster assignment bar plots and example patches in each cluster c0 ol c2 <3 o4 (b) Comparison to PANTHER
= ]
Ry

pr S ) - i
- h u PANTHER PTCMIL

Fig. 2: Visualization and interpretation of PTCMIL. (a) Clustering maps, cluster
assignment bar plots and example patches in each cluster; (b) Comparison to
PANTHER.

=)

(¢3) consists of spindle-shaped cells within a collagen-rich extracellular matrix.
¢4 are mainly pools of red blood cells that appear as tightly packed, uniform red
cells. Besides, in Fig. 2(b), the two-stage clustering MIL model PANTHER [18]
shows clustering collapse (homogeneous colors, poor tissue separation), while
PTCMIL produces more structured maps, better reflecting local heterogeneity.

3.5 Ablation Studies and Hyperparameter Analysis

We present ablation studies on key modules in Table 4. Clustering (sec 1):
We evaluate the effectiveness of clustering in ViT-based MIL aggregation and
its sensitivity to the number of clusters. PTCMIL (last line) achieves higher
AUC and accuracy for classification on TCGA-NSCLC and improved survival
prediction on CRC. Merging (sec 2): We assess the impact of merging tokens
to create prototypes versus directly using prompt tokens. Merging reduces token
redundancy and enhances WSI representation, leading to better performance.
In contrast, using prompt tokens alone results in lower performance, as further
illustrated in Fig. 1(c). Pooling (sec 3): While the cls token provides global
image representation in ViT, integrating prototype tokens alongside the cls token
enhances performance, showing the advantage of prototype-guided pooling. In
Fig. 3, PTCMIL consistently outperforms the best baseline within a cluster
range of 3 to 9, achieving peaks at number of cluster equals 5 on TCGA-NSCLC
(classification) and CRC (survival).



PTCMIL 9

o
g Table 4: Ablation of clustering, merg-
P ¢ |l— | ing, and pooling.
< 935 Acc (PTCMIL) —e— PTCMIL
T R S 3 3 Clustering[Merging]  Pooling TCGA-NSCLC [TCGA-CRC
w/o w/ |w/o w/|proclspro + cls| AUC Acc c-index
(a) NSCLC (b) NSCLC (c) CRC 7 — — = =  —  [96:580a 90.870s | 0705007
v |7 V [96.77070  Odisr | 0.6850.0s
v 71V 96.92072 9177101 | 0.7260.07
v v v 96.440.514  950.87 0.7060.07
v v v |97.810.67 92.171.80 0.7380.00

Fig. 3: Variation in the number of clusters.

4 Conclusion

In this paper, we propose PTCMIL, an end-to-end clustering ViT-based MIL for
WSI feature aggregation, addressing WSI’s giga-pixel scale and heterogeneity.
By introducing learnable prompt tokens and integrating clustering with predic-
tion, PTCMIL handles WSI heterogeneity effectively. Experiments show supe-
rior performance across tasks and improved slide clustering where prior methods
struggled. Our approach enables simultaneous prototype learning and task per-
formance enhancement while identifying interpretable biomarkers. Future work
will explore automatic cluster number selection for cancer types and the inte-
gration of vision-language models with clinical knowledge for guided clustering.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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