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Abstract. Fracture risk due to osteoporosis is a highly prevalent disease
with costs in the European Union alone of 56 billion p.a.. Accurate as-
sessment of the microarchitecture of the proximal femur (e.g., trabecular
thickness, trabecular spacing, bone volume fraction) is essential for as-
sessing bone strength and predicting fracture risk. High resolution (HR)
CT provides the necessary spatial resolution. However, for best hip frac-
ture risk assessment HR-CT imaging should be performed at the proxi-
mal femur but this would require an unacceptably high level of radiation
dose. Therefore, we aimed to investigate whether deep learning based
super-resolution (SR) models applied to low-resolution (LR) clinical CT
images permit improved assessment of structural parameters.

In this study we adapted and optimized state-of-the-art model architec-
tures to compare them in the context of CT-SR of the proximal femur.
The dataset used consisted of pairs of clinical LR-CTs and HR-CTs of
50 individuals. This represents clinical reality and avoids bias of down-
sampling HR images to mimic LR images. Using automated preprocess-
ing data is prepared for model training. We used three-stage template
matching of point clouds to automatically extract the relevant regions of
interest, from which metrics for bone microarchitecture were determined.
We compared SRGAN, Real-ESRGAN+, LDM, and ResShift regarding
improvement in structural assessment. We also tested whether 2.5D ap-
proaches —using multiple slices of the CT— are superior to 2D approaches.
In terms of perceptual reconstruction, the ResShift 2.5D model outper-
forms the other SR models and achieves comparable results to the Real-
ESRGAN-+ architectures in the derivation of biomechanical properties.

Keywords: CT Super-Resolution - Bone Microstructure - Clinical CT
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1 Introduction

Osteoporosis is a systemic skeletal disease characterized by reduced bone mass
and microarchitectural structure of the bone [1,21]. The trabecular bone struc-
ture is degraded faster than the compact cortical bone, which is why bones with
a high proportion of spongiosa, such as the proximal femur, have an increased
risk of osteoporotic fractures [1]. The prevalence of osteoporosis increases signif-
icantly with age. In view of demographic trends and increasing life expectancy,
it is predicted that the incidence of osteoporotic fractures will continue to rise
substantially in the future [1,18,21]. This development significantly impairs the
quality of life of those affected and also represents a considerable financial bur-
den for healthcare systems — in 2019 alone, 4.3 million fractures in the European
Union resulted in costs exceeding 56 billion euros [1,15,21]. To prevent these
consequences, an efficient prognosis and early diagnosis are crucial, as timely
preventive measures in line with guidelines yield high success rates. According
to the current recommendations of the World Health Organization (WHO), the
diagnosis of osteoporosis is primarily based on determining bone mineral den-
sity (BMD) using Dual-Energy X-Ray Absorptiometry (DXA) [1,21]. However,
this standard metric only has a classification accuracy of around 65 % for assess-
ing risk of hip fracture [11]. The scientific literature therefore recommends the
integration of additional metrics that capture the microstructural bone prop-
erties. Parameters such as bone volume fraction (BV/TV), trabecular thick-
ness (Th.Th), trabecular spacing (Th.Sp) and trabecular number (Th.N) have
been shown to be predictive of the mechanical strength of the bone and thus offer
high diagnostic and prognostic potential for estimating fracture risk [1, 18-20].

High-resolution peripheral quantitative computed tomography (HRpQCT),
here denoted as HR-CT, facilitates the acquisition of detailed images essential
for analyzing the bone microstructure. However, it is currently mainly used in
scientific settings because of high costs, a time-consuming procedure, and a com-
paratively small field of view. It is primarily limited to peripheral skeletal regions
and would pose a high radiation exposure for in vivo imaging [1,11,19,20]. To
overcome these limitations, super-resolution (SR) methods could be applied to
clinical CT images that are characterized by a lower spatial resolution (denoted
as LR-CT). SR methods are used to increase the image resolution in order to
achieve an approximation of the quality of HR images. Deep learning (DL) based
approaches, which are capable of significantly improving image quality by train-
ing on extensive paired data sets of LR and HR images, are particularly promis-
ing. Recent studies show that these methods outperform common interpolation
methods in terms of image sharpness, texture detail and structural accuracy [17].
A noteworthy class of algorithms are Generative Adversarial Networks (GANSs),
which generate realistic HR-images through competition between a generator
and a discriminator network [16, 17, 23, 24]. More recently, diffusion models have
emerged as a promising class of algorithms due to their stable training dynamics
and ability to provide highly detailed reconstructions [22].

In the field of DL-SR imaging of the proximal femur, only two approaches
have been introduced so far — and both of these studies exhibit methodological
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and data-related limitations that hinder their applicability in clinical practice.
Chan and Rajapakse [4] trained an SR3 model based on 26 HR-CT volumes with
an isotropic voxel spacing of 240 ym. The corresponding LR-CT volumes were
generated by bicubic downsampling to 720 pm. Despite improvements over meth-
ods like SRGAN, the significance of these results is limited by the small dataset
size and the use of synthetically generated LR volumes. These downsampled im-
ages may still retain aspects of the HR data that are absent in truly independent
LR acquisitions, making them less representative of real clinical imaging condi-
tions. Frazer et al. [10] developed a SRGAN using a paired data set of 10 HR-CT
volumes (60 pm isotropic) and 10 LR-CT volumes (0.3125x0.3125x0.25 mm) ac-
quired, however, with a special clinical CT scanner that is not representative of
commonly available CT scanners, as acknowledged by the authors. Therefore,
the significance of these results is also limited. Besides the small and unbalanced
sample size, the scaling applied during registration possibly leading to distortions
in the metrics is a limitation. Although both studies are promising, they do not
use current state-of-the-art (SOTA) SR models. Furthermore, they are based on
inadequate datasets that are limited in both size and clinical relevance, as they
still contain too much detail in the LR-CTs. There is also a lack of standardized
evaluation methods, which makes it difficult to directly compare the results.

This paper aims to address these limitations by proposing the following con-
tributions: (1) We introduce the largest paired dataset to date, consisting of 50
HR-CTs and corresponding LR-CTs, with the LR-CTs recorded under real clin-
ical conditions. This dataset enables a realistic evaluation of SR methods in a
medical context and should be made available to the research community; (2) We
adapt and test various current SOTA SR models on 2D and 2.5D slices of the de-
scribed dataset, also including the recently released ResShift [27] model that has
not been evaluated on medical image data before; (3) We propose an automated
evaluation pipeline based on template matching of surface point clouds. This
method enables a standardized selection of regions of interest (ROIs), ensuring
a reproducible evaluation of SR models based on established metrics.

2 Methodology

2.1 Individuals, Dataset and Data Preprocessing

Our dataset consists of paired CT images of 50 patients, including 31 male and
19 female individuals. The age of the patients ranges from 22 to 89 years, with
an average age of 60.8 £ 17.5 years. Body height varies from 1.43m to 2.00 m,
with a mean of 1.73m + 0.11 m, while body weight ranges from 44 kg to 123 kg,
with an average of 81.6kg+ 19.4kg. The LR-CTs were acquired post mortem
in situ as whole-body scans with a Philips Incisive CT. Image acquisition was
performed with anisotropic voxel spacing of 0.98 mm x 0.98 mm X 0.65 mm, peak
kilo voltage output (kVp) of 120kV, tube current of 113-130mA, and an UB
filter. In the femur region, these CT scans exhibit a mean Signal-to-Noise Ratio
(SNR) of 0.93 and a mean contrast ratio of 2.43. Subsequently, the HR-CTs were
acquired using an HR-pQCT (Xtreme CT, SCANCO Medical AG, Briittisellen,
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Switzerland). The left proximal femur was scanned er situ with an isotropic
voxel resolution of 82 pm, a kVp of 59.4kV, 900 pA, and reconstructed with the
Shepp-Logan kernel. This study was approved by the ethics committee of the
Hamburg chamber of physicians (Reference Number: WF-057,/21) and conducted
in accordance with the ethical standards of the Declaration of Helsinki of 1964
and its later amendments.

In order to train neural networks for SR, semi-automatic preprocessing of
our dataset is required to generate corresponding volume pairs. The following
processing steps are performed for each pair of LR-CT and HR-CT. First, both
DICOM volumes are loaded with the open source software 3D Slicer [8]. For
initial adjustment, the LR-CT is roughly aligned with the HR-CT by man-
ual translation and rotation. This is followed by precise registration using the
BRAINS General Registration Module [14] with a rigid six degrees of freedom
transformation model. The LR-CT serves as a moving volume and the HR-CT
as a fixed volume. After registration, the LR-CT is resampled onto the isotropic
voxel grid of the HR-CT using a specially developed 3D slicer module, which
performs resampling with SimpleITK and a B-spline interpolation, and is sub-
sequently cropped to match the spatial dimensions of the HR-CT. As only the
LR-CT is transformed, the structural integrity of the HR-CT is preserved, en-
suring that no relevant information is lost. This procedure is independent of the
voxel spacing of the LR clinical CT scanner. Therefore, it is also transferable
to other scanners. A segmentation mask is required for the further preprocess-
ing steps of the volumes exported as DICOM. To automatically compute these
masks, we use a 3D nnUNet [13] trained on a subset of the Total Segmentator
dataset containing a total of 1,204 labelled CT images [26]. For this purpose,
102 CTs and their corresponding segmentation masks were first cropped to the
relevant areas of the left and right femora. The resulting 204 volumes with an
isotropic voxel spacing of 1 mm were then used as the basis for training. The
trained nnUNet enables generating masks from downsampled LR-CTs of our
dataset and upsamples them to the original resolution with voxel spacing of
82 pum. The value ranges were normalized to the range [0, 1] and clipped. Finally,
the mask is applied so that only the femur bone and no other structures (e.g.,
tissue or neighboring bones) is present in the volume.

2.2 Model Architectures

To enhance the resolution and reconstruction of anatomical structures in LR-
CTs of the proximal femur, we adapted and compared four deep learning SR
models (SRGAN [16], Real-ESRGAN+ [23], Latent Diffusion Model (LDM) [22]
and ResShift [27]) both in 2D and 2.5D. The latter also includes four neigh-
boring slices assuming that the contained structural information represents an
advantage for the reconstruction of the considered slice.

SRGAN. Since Frazer et. al. [10] were able to achieve promising results with an
SRGAN, we aim to evaluate the capabilities of this model architecture trained
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on real LR-CTs of the proximal femur. Due to the voxel-to-voxel correspondence
between the LR and HR-CTs, we removed the upsampling layer. Furthermore,
we added four additional residual blocks into the generator, given that the di-
mensions of the input pixels exceed those of the original SRGAN. No modifica-
tions to the model were necessary for 2.5D, because the neighboring slices were
integrated as additional channels.

Real-ESRGAN+. A strong limitation of SRGAN is its inability to reproduce
finer structures in LR images [16]. To address these limitations Wang et al.
developed ESRGAN [24] and Real-ESRGAN+ [23]. The latter approach not
only focus on the reconstruction of fine details, but also introduces a process to
eliminate undesirable artifacts that arise during the reconstruction process. Due
to the larger input size compared to Real-ESRGAN+, we added three additional
Residual-in-Residual Dense Blocks. Because of the low image sharpness of the
LR-~CTs and the different acquisition conditions compared to the HR-CT in our
dataset, the default degradation process is omitted. No further adjustments were
made to the original model regarding pixel unshuffling and the use of a unsharp
masking filter to mitigate overshooting artifacts. The 2.5D input was processed
in the same way as for the 2D input.

LDM. Due to the known challenges of training GANs [22], we use a LDM
as another class of SR model algorithms. We deliberately decided against the
SR3 model used by Chan et al. [4], as LDMs offers both higher efficiency and
the ability to generate more realistic textures [22]. A LDM uses a variational
autoencoder (VAE) to transform the HR image into a latent space with dimen-
sion that corresponds to those of the LR image. In our specific case, we apply
pixel unshuffling to transform the LR-CT image to the dimension of the HR
latent space (6,64, 64) without information loss. In the 2.5D case, the number of
channels was increased to accommodate the requirements of pixel unshuffling.

ResShift. In contrast to LDMs, ResShift [27] is capable of generating visually
plausible images within 15 iterations, facilitated by the formation of a Markov
chain between HR and LR images. This is achieved by shifting the residual —
the difference between the HR and LR images — which enhances the efficiency
of transitions. ResShift demonstrates comparable or even superior performance
compared to other SOTA SR methods across various applications [27]. Building
on these findings, our study is the first to apply and evaluate ResShift on med-
ical data, employing it as the fourth SR model in our experimental setup. To
enable even faster training of ResShift in the latent space, we utilize a variational
autoencoder (VAE) trained on HR-CTs. The VAE is also applied to LR-CTs to
ensure alignment within the shared latent space. Additionally, a feature extrac-
tor is employed on the original LR-CTs to transmit LR features as conditioning
inputs to the Swin-Unet [3]. In the 2.5D approach, the features of adjacent slices
— extracted using the feature extractor adapted for five channels — are likewise
supplied as conditioning inputs to the Swin-Unet.
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3 Experiments and Results

3.1 Experimental Setup

Evaluation. Since the structural relationships are of primary importance in the
reconstruction of the slices, the calculation of Structural Similarity Index (SSIM)
and Peak Signal-to-Noise Ratio (PSNR) is performed on the entire slices and are
then averaged over the volume [25]. As SSIM and PSNR are sometimes unre-
liable for blurred images, we also record the Learned Perceptual Image Patch
Similarity (LPIPS) [28] and the Gradient-SSIM (GSSIM) [5]. The average in-
ference time (T/V) is also measured. To consistently and automatically extract
structural bone metrics from the same anatomical region, independent of patient-
specific variations and without manual ROI selection, we developed a multi-stage
template matching approach based on surface point clouds. Bone volume, de-
fined as the sum of bone voxels within the binary mask, was used to select three
templates, which were uniformly sampled to ensure anatomical diversity. The
three selected femur templates were segmented into anatomical regions (head,
neck, trochanter, shaft) using 3D Slicer. The segmentation masks were converted
into triangle meshes using Open3D [29], from which 10,000 labeled points were
uniformly sampled as point clouds. The following procedure was then applied to
all bone volume pairs (LR-CT/HR-CT or SR-CT/HR-CT): (1) The appropriate
template is selected for both volumes and their segmentation mask. For each
CT volume, a binary bone mask is then generated from a nnUNet trained on
HR-CTs; (2) A surface point cloud is generated from the segmentation mask in
the same way as the templates. We then apply a three-stage point cloud regis-
tration process. First, the point cloud centers are aligned by translation. This is
followed in the second step by a rough registration using RANSAC [9]. Finally,
a more precise fine adjustment is applied using ICP with scaling [2]. Then the
labels of the template point cloud are transferred to the transformed point cloud
so that a complete segmentation into the four anatomical regions is achieved;
(3) The center of all associated points is calculated for the anatomical regions of
the head, neck, and trochanter. 3D-ROIs with an edge length of 128 voxels are
extracted around these reference points from the bone structure masks; (4) To
evaluate the bone structure, BV/TV, Tbh.Th, Tb.Sp, and Th.N are calculated
from the extracted ROIs using the Hildebrand algorithm [12].

Implementation Details. The dataset is divided into training, validation, and
testing, corresponding to a 60/20,/20 split. Due to the size of the volume data,
2D and 2.5D patches with a size of 512 x 512 are extracted from the axial slices.
Sampling is centered around the voxel located inside the femur. Rotation and
flipping are used to augment the data and ensure robustness.

All models are trained with Adam optimizer and a batch size of 64, with
each model processing 10,000 samples per epoch. The NVIDIA H100 NVL GPU
with 96 GB VRAM was used for this purpose. To train the SRGAN, the gen-
erator is first pre-trained with a learning rate of le-4 (multi-step learning rate
scheduler) for 45 epochs in order to avoid overfitting the discriminator during
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SRGAN 20 SRGAN 2.5D LDM 20 LDM 2.5D Reshift 20 ResShift 2.5D

Fig. 1. Comparison of the tested SR models based on their reconstruction performance
using an axial slice and an enlarged view (30 mm edge length).

the subsequent GAN training. The actual GAN training then takes place over
75 epochs, whereby the discriminator is optimized with a learning rate of le-6.
The same training procedure is used for the Real-ESRGAN+. The generator is
first pre-trained with a learning rate of 2e-4 over 20 epochs (constant learning
rate scheduler), followed by adversarial GAN training over 60 epochs, whereby
the discriminator is optimized with a learning rate of le-4. The LDM model was
trained over 100 epochs with a learning rate of le-5 where forward diffusion was
carried out with the DDPM method (7 = 1000) and inference with the DDIM
method (T = 30). The VAE was pre-trained over 75 epochs using a perceptual
loss and a mean squared error (MSE) loss. A patch discriminator was then used
for adversarial training (75 epochs, learning rate of 45e-6). The ResShift model
was trained over 150 epochs with the same learning rate, using 8 diffusion steps
and a Cosine scheduler. Our code will be shared publicly upon acceptance.

3.2 Comparative Analysis

The results used to assess the reconstruction performance of the SR models are
presented in Figure 1, exemplified by an axial slice from a test volume. Addition-
ally, the average SSIM, PSNR, LPIPS and GSSIM values across all slices and
volumes, along with the mean T/V, are reported. Qualitative analyses show that
models based on GAN architectures generate symmetric recurrent structures as
trabecular meshwork. SRGAN 2D in particular hallucinates microstructures that
are not present in HR-CT. The LDM, on the other hand, is not able to correctly
reproduce prominent structures such as the cortex and also shows only minor
local differences in the trabecular meshwork. The most convincing model is the
ResShift model, especially when trained on 2.5D data, as it can reconstruct both
the cortex and the trabecular distribution well. For the other three models, the
added value of 2.5D is marginal. The analysis of the quantitative metrics shows
that SSIM and PSNR have the highest values for the LR-CT and thus do not
match the qualitative results. The 2.5D LDM model achieves the best LPIPS
value. The highest agreement with the visually assessed image quality is shown
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Table 1. Mean, standard deviation and Pearson correlation coefficient (r) of the bone

microstructure metrics. Th.Th and Tb.Sp are in mm, Tb.N in mm~*.

SRGAN Real-ESRGAN+ LDM ResShift

LR 2D 2.5D 2D 2.5D 2D 2.5D 2D 2.5D HR
BV/| .15+.2 [.54+.14[.46+.15[.43+.16| .41+.14 [.62+.07(.64+.08[0.59+0.1] .62+.1 5606
TVy| r=.5 r=.35 | r=42 | r=.73 | r=.71 r=.29 | r=.37 | r=.64 |r=.73 | :
Th. | .86+.53 | .6+.08 | .63+.1 [.51+.12] .5+.1 [.54+.06].57+.07| .63+.11 [.63+.11 58+.08
Thy | r=.33 | r=.64 | r=.81 | r=.77 r=.8 r=.82 | r=.74 | r=.86 | r=.86 |’ :
Th. | 5.1+3.8 [.63+.15(.89+.49[.65+.14| .65+.12 [.41+.06(.41+.06| .5+.09 [.47+.07 6405
Spn | r=0 r=.13 |r=-.08| r=2 | r=.33 |r=-22| r=—1 | r=-.06 | =07 |7
Th. | .21+.09 [.82+.09[.69+.15[.86+.06| .88+.05 [1.1+.07| 1+.06 | .89+.09 [.92+.09 82+.06
Ny | 7==58 | r=.22 |r=-15| r=21 | r=47 | r=.74 | r=.79 | r=.67 | r=.62 | .
BV/[ .01+.01 [ .31+.2 [ .25+.2 [.05+.04| .06+.04 | .1+.07 [.12+.07] .06+.05 [.06+.04 1141
TVy| r=.35 |r=—.03| r=.21 | r=.82 r=.77 | r=64 | r=83 | r=.81 | r=.85|" :
Th. [.79+1.18[.46+.11[.46+.14| .4+.32| .36+.2 [.32+.21[.34+.19] .36+.27 |.35+.29 35:.14
Thy| 7=95 | =85 | r=.92 | r=.97 | r=.97 | r=.97 | r=.97 | r=.97 | r=.97 | '
Th. | 8.4+8.3 [.99+.53[1.4+.95(2.8+1.9] 2.1+1.3 [1.3+.78] 1+.19 | 2.3+.83 | 2.2+1 3.546
Spn | r=—41 |r=—28| r=.39 | r=.72 | r=.93 | r=—. r=.51 | r=49 | r=.74 :
Th. | .07+.07 |.76+.24[.66+.29(.41+.18| .49+.17 |.72+.24(.75+.13] .42+.15 |.44+.16 53..95
Np | 7=.37 |r=-27| r=.13 | r=.68 | r=.75 |r=-.18| r=.51 r=.62 | r=.74 |’ :
BV/| 0+.01 [|.27+.2[.22+.19[.03+.04] .04+.03 [.05+.03].05+.04] .02+.01 [.02+.02 11+.09
TVy| r=27 |[r=—24| r=.13 | r=.76 | r=.63 r=.08 | r=.19 | r=.06 | r=.71 |’ :
Th. | .22+.24 | .4+.07 [.37+.06[.26+.04| .27+.02 [.22+.02].23+.02] .22+.03 |.21+.02 34.05
Thy | r=.26 |r=—.18| r=.34 | r=.83 | r=.75 r=.15 | r=.58 | r=.79 | r=.79 | 7
Th.[6.9+8.3 | 1+.64 [1.5+£1.2]3.1+2.2] 1.9+.76 | 1.3+.5 [1.4+.41| 2.8+1 [2.9+1.5 1.6-.8
Spt | r=—19 |r=—15|r=—.17| r=.83 r=.6 |r=—08|r=-—21| r=.58 | r=.48 U
Th. | .05+.07 [.78+.23| .7+.3 | .4+.2 | .51+.16 [.72+.19(.66+.16] .37+.12 | .4+.19 6+.18
N¢ r=.26 |r=-.18|r=-.04| r=.66 r=.6 r=.01 |{r=—.09| r=.58 | r=.62 |

by the GSSIM, which is highest for ResShift 2.5D at 0.7629 and lowest for the
LR-CT at 0.7406. The GAN-based models have a significantly shorter inference
time compared to the diffusion models. While the SRGAN 2D generates an SR
volume in 138 seconds on average, the LDM 2D requires 1,200 seconds. The
metrics of bone microstructure are compared for all models in Table 1.

The analysis of the correlation coefficients shows that the ResShift 2.5D and
the Real-ESRGAN+ architectures in particular are superior to the other SR
models examined in the reconstruction of bone microstructures. Both models,
when applied in a 2.5D configuration, demonstrated statistically significant im-
provements over metrics derived from the LR-CT scans in 8 out of 12 evaluation
metrics, as determined by Friedman’s test followed by a Conover post-hoc anal-
ysis [6, 7]. In contrast, the SRGAN achieved the lowest correlation with the HR~
CTs. In most cases, all models provide a more accurate estimation of structural
bone metrics.

4 Conclusion, Limitations and Future Work

In this paper we adapted and compared different SOTA SR model architectures —
trained on a newly introduced dataset reflecting the clinical reality — for improv-
ing the calculation of bone microstructure metrics. Our analysis demonstrates,
that ResShift 2.5D outperforms existing model architectures regarding percep-
tual reconstruction and shows similar results to the Real-ESRGAN+ when de-
riving structural bone metrics. Additionally, our introduced evaluation pipeline



Title Suppressed Due to Excessive Length 9

enables standardized comparisons for other approaches. Although our results
are promising, we also identified the following limitations: (1) The LR-CTs have
limited resolution due to the real clinical setting leading to a loss of information
and possible hallucination of bone microstructure; (2) Our method has only been
validated with one clinical CT scanner; (3) Since the training is performed exclu-
sively with axial slices, the reconstruction quality in the other two dimensions is
less precise; (4) The quality of the results in both preprocessing and evaluation
depends significantly on the accuracy of the binary masks. Given the current
state, there are several avenues for future work, including the assessment with
other metrics, the training on 3D patches and the validation through a suitable
downstream task.
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