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Abstract. The blind sweep ultrasound protocol, coupled with artifi-
cial intelligence (Al), offers promising solutions for expanding ultrasound
availability in low-resource settings. However, existing Al approaches for
gestational age (GA) prediction using bind sweeps face challenges like
reliance on manual segmentation, computational inefficiency from high
frame volume, and suboptimal sampling strategies that compromise per-
formance, particularly with smaller datasets. We propose SelectGA, a
novel framework for automated blind sweep analysis that enables effec-
tive fine-tuning of pretrained models through adaptive frame selection for
GA prediction. Our approach identifies the most informative and least
redundant frames, enhancing both training efficiency and prediction ac-
curacy. Validated on data collected from ultrasound devices in diverse
resource environments, SelectGA improves gestational age prediction ac-
curacy by 27% on mean absolute error metrics. These results demonstrate
substantially improved generalizability, establishing foundations for sus-
tainable AI adoption in prenatal care across resource-constrained set-
tings. Code is available at: https://github.com/tanya-akumu/selectGA
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1 Introduction

Accurate estimation of gestational age (GA) is critical for monitoring fetal devel-
opment and ensuring timely clinical interventions in antenatal care. Ultrasound
imaging is the gold standard for GA prediction, usually estimated from standard
planes defined by international guidelines [23]. Even so, the quality of the ac-
quisition relies heavily on expert sonographers and high-end equipment, limiting
its accessibility in low-resource settings. A recent scanning protocol, the blind
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sweep protocol, offers a promising alternative for resource-constrained environ-
ments where clinical expertise is scarce [6]. This protocol consists of performing
a set of pre-defined sweeps over the maternal abdomen without a real-time vi-
sualization, that can be easily performed by minimally trained healthcare work-
ers. However, blind sweeps commonly result in a large number of uninformative
or redundant frames and are unlikely to contain clear views of the anatomical
standard planes [11], thus posing significant challenges for automated analysis.
Therefore, we aim to develop an Artificial Intelligence (AI) driven framework
that optimizes blind sweeps analysis for accurate and efficient GA prediction,
thus addressing the limitations of existing methods.

While existing approaches for GA prediction from blind sweep ultrasound
videos have made significant strides, notable limitations remain. Arroyo et al [1]
as well as Van Den Heuvel et al [11] proposed methods that rely on manual
segmentation of fetal structures in ultrasound sweeps, using Al to estimate fetal
biometry from the individual segmentations and further using the estimated fetal
biometry to estimate GA using the Hadlock formula [9]. While effective, this ap-
proach is labor-intensive and requires expert intervention, making it unsuitable
for scalable applications. Processing all the frames from a video, which can con-
tain hundreds to thousands of frames, as input to an Al model is computation-
ally intensive and necessitates sampling techniques to reduce resource demands
while maintaining model efficacy. Pokaprakarn et al [20] introduced a method
that randomly samples frames from sweep videos to predict GA. Although their
large dataset (n=109,806 videos) reduces the risk of missing informative frames,
this randomness is suboptimal, in particular for smaller datasets, which would
need much more iteration during training thereby causing the model to over-fit
on the training samples. Conversely, Gomes et al [8] and Lee et al [15] em-
ployed uniform sampling of frames in the sweep videos which, while systematic,
likely still includes frames irrelevant to GA prediction, especially in the presence
of limited dataset sizes. Therefore, there is a need for a robust frame selection
strategy that maximizes the information passed to the model, ensuring reliable
GA prediction without relying on manual intervention or large-scale datasets.
To the best of our knowledge, to date no publicly available methodology has
addressed this challenge.

To this end, we propose SelectGA, a novel framework for adaptive frame
selection and GA prediction from blind sweep ultrasound videos. SelectGA in-
corporates a pretrained object detector, identifying frames containing fetal struc-
tures, and further applies a selection algorithm to determine the most dissimilar
representative frames for GA prediction. This approach ensures that only infor-
mative frames are used, addressing the challenges of redundancy and variability
inherent in blind sweeps. Our contributions can be summarized as follows:

— We introduce a novel method for adaptive frame selection in blind sweep
ultrasound videos thus maximizing the information for training.

— We implement a full GA prediction framework based on this method with
data from diverse geographical centers.



Adaptive Frame Selection for Gestational Age Estimation 3

— Our framework establishes a new benchmark for fetal ultrasound analysis,
outperforming existing methods in the low data regime.

Table 1: Comprehensive dataset summary detailing the multi-country fetal ul-
trasound dataset used in this study.

Site Patients Scans Videos Frames Resolution Train Val Test

Spain center 114 114 871 157,173 735 x 975 543 vids 150 vids 178 vids
Kenya center 36 48 443 87,875 768 x 1024 244 vids 71 vids 128 vids

2 Methodology

2.1 Dataset

For this study, we collected a new fetal ultrasound dataset that consists of blind
sweep ultrasound videos acquired from two centers, one from Barcelona, Spain
(high resource), and the other from Rabai, Kenya (low-resource). Blind sweeps
were performed using a standardized protocol involving a fixed number of ver-
tical and horizontal freehand sweeps over the maternal abdomen. We used the
Symphysio Fundal Height (SFH) [19] to determine the number of sweeps to col-
lect from a patient. 6 (3 horizontal and 3 vertical) sweep videos were collected for
a SFH of between 16 to 24 cm, while 10 (5 horizontal and 5 vertical) sweeps were
collected for a SFH>25 cm. In the Spain center, the sweeps were conducted by a
trained sonographer using the Philips Lumify (Philips, The Netherlands) ultra-
sound device, while in the rural Kenya center, the Voluson v8 (General Electric,
USA) device was used. Each loop video was set to 10 seconds. The ground truth
GA label was established from the first ultrasound scan before the 14th week
of pregnancy based on the Crown Rump Length (CRL) [7]. The data totaled
162 study scans and 1,314 blind sweep videos. The data was split into training,
validation, and test sets at patient level using a 60-20-20 ratio, ensuring no data
leakage. Detailed statistics of the dataset are provided in Table 1.

2.2 Overall Framework

Figure 1 illustrates an overview of the proposed framework. It consists of two
stages: 1)Adaptive Frame Selection and 2) gestational age prediction. In
stage 1) we apply the anatomically guided (AG) selector to filter frames that
contain fetal structures and use the diversity-guided selector (DS) to select
the most diverse optimal frames. In stage 2), the chosen frames are fed to the
model to predict the gestational age.
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Fig.1: Overview of our proposed framework which predicts gestational age
through a sequential process of Adaptive Frame Selection followed by GA Pre-
diction. The adaptive frame selection employs anatomically guided selector to
filter frames containing anatomical features and an adaptive diversity guided
selector to chose the most diverse frames based on clustering by Euclidean dis-
tance between feature embeddings. The chosen optimal frames are then pro-
cessed through a ResNet-50 backbone with weighted attention module and re-
gression head to produce final gestational age estimates.

2.3 SelectGA: Adaptive Optimal Frame Selection

The goal of our selection Algorithm 1 is to choose a subset of the most in-
formative frames from an ultrasound sweep video V for GA prediction. Let
V ={L,I5,...,Iy} represent the ultrasound sweep video, where I; denotes the
i-th frame and N is the total number of frames. A pretrained object detector,
0p, is applied to each frame I; to detect fetal structures. This pretrained detector
is based on Faster R-CNN [22] and fine-tuned on a small subset (500 images) of
open-source fetal ultrasound standard plane images [4,24]. The detector outputs
a set of bounding boxes B; and a confidence score C; for each frame. Frames with
detected fetal structures and a confidence score above a predefined threshold «
are retained. We set = 0.25 based on the lowest mean of the classes in our
dataset. Formally, the set of selected frames S is defined as:

S:{Ii|Bi7é(Z)andCi>oz}, (1)

where B; # () indicates the presence of fetal structures in frame I;, and C; > «
ensures that only frames with high-confidence detections are included.
Feature Embedding Extraction Next, a pretrained feature extractor 64, con-
sisting of only the hidden layers of 8p, is used to compute feature embeddings
for each frame in S. Let M = |S| be the number of selected frames. The feature
embeddings are represented as X = {z1,22,...,2p} , where z; € RY is the
d-dimensional feature vector corresponding to the j-th frame in S.
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Algorithm 1 Adaptive Frame Selection for Gestational Age Prediction

Require: Ultrasound sweep video V = {I1, I2, ..., In}, pretrained object detector 0p,
confidence threshold a, number of clusters K
Ensure: Selected informative frames F' for GA prediction
1: S« 0 > Set to store frames with detected fetal structures

2: for each frame I; € V do

3 (Bi,C;) « 0p(I;) > Detect fetal structures, where B; is the set of bounding
boxes and C; are a set of representative confidence scores

4: if B; # 0 and C; > o then

5: S < SU{I;} > Retain frames with fetal structures and confidence above o

6: end if

7: end for

8: Extract feature embeddings X = {z1,z2,...,zn} from S using a pretrained fea-
ture extractor 04

9: Cluster X into K clusters: {C1,C2,...,Ck} < K-means(X, K)

10: Select one representative frame fj, closest to the centroid of each cluster C to form

F={fi,f2-., frx}
11: return F

Clustering and Representative Frame Selection To reduce redundancy
and select the most informative frames, the feature embeddings X are clustered
into K groups using the K-means algorithm [16]. Let {C,Cs,...,Ck} denote
the resulting clusters, where each cluster Cj contains a subset of feature embed-
dings closest in Euclidean distance. From each cluster Cy, a single representative
frame f, is selected. The final set of informative frames F' = {f1, fo,..., fx} is
given by sampling the frame corresponding to the feature embedding closest to
the centroid of cluster C. The algorithm returns the set of the most dissimilar
informative frames F', which can be used as input for gestational age prediction
models. This approach ensures that the selected frames are both representative
of the ultrasound sweep while having minimal overlap, thus allowing for efficient
prediction in resource-limited settings.

2.4 Gestational Age Prediction Model

The GA prediction model consists of three main components: a ResNet-50 fea-
ture extractor [10], a Weighted Average Attention module (WAA) as imple-
mented in [20], and a regression head. The ResNet-50 backbone is initialized
with weights pretrained on the ImageNet dataset [5], providing a robust feature
extraction capability. The ResNet-50 backbone processes each selected frame
fr € F to extract high-dimensional feature representations x; € R24® where ¢
is the frame index. The WAA module [20], inspired by the additive Bahdanau
attention mechanism [2], assigns a contribution score w; to each frame based on
its relevance to the task. The module consists of three trainable parameters: V,
W, and Q. The attention weights w; and scores s; are computed as shown equa-
tion 2. @) reduces the dimensionality of x; to produce the feature representation
a.
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N
w, = o (V (tanh (Way))), s, = ZNLw,a:Zst.Q(xt), (2)

Finally, a regression head consisting of a dense linear layer predicts the GA
in days. We train the model using the L1 loss function, which measures the
absolute difference between the predicted GA ¢ and the ground truth y:

1 N
Lreg = NZ“J% 7yz| (3)
=1

3 Experiments and Results

Baselines As prior work [8,20] does not provide accessible model weights or
datasets, we re-implement their methods on our dataset for fair comparison. We
evaluate our framework against diverse baselines including image-based mod-
els (ResNet-50 [10,20], Universal Ultrasound Foundation Model [13]), medical
imaging models (EchoNET [17] adapted from LVEF regression), and video un-
derstanding models (ViFi-CLIP [21], Qwen-VL [3]). All baselines are adapted
by keeping the same backbone architecture and replacing final layers with our
GA regression head as described in 2.4 and fine-tuning end-to-end.

Implementation Details Following the original implementations, we employ
different sampling strategies for the baseline models. ResNet-50 and USFM use
random sampling as in [20,13]. EchoNET, ViFi-CLIP, and Qwen-VL employ
uniform sampling as per their original designs [17,21,3]. The baseline models are
trained using the AdamW optimizer [14] with a batch size of 16 and a learning
rate of 107%. We reduce the learning rate by 10x after every 45 iterations for a
total of 200 iterations. To avoid over-fitting, we incorporate early stopping with
patience of 5 iterations on the validation set. All implementations were done with
the Pytorch framework [12] and the models were trained on a NVIDIA GeForce
RTX 3090 24GB GPU. For all experiments, we sampled K = 16 frames per
sweep video, resized the images to size (224x224) and applied data augmentation
techniques such as cropping, contrast adjustment, brightness, rotation, and blur.
Evaluation Metrics We use the Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), R? metrics to evaluate the performance on a held-out
test set. Moreover, we assess the percentage proportion of study scans with abso-
lute errors within clinically relevant thresholds (<7 days and <14 days) [18,23].

3.1 Quantitative and Qualitative Results

Table 2 presents the performance comparison of our proposed framework against
the selected baselines. Our method outperforms other approaches across all
evaluation metrics on the overall test set. SelectGA achieves the lowest MAE
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Table 2: Comparison of Model Performance on Test Set.

Method | MAE | RMSE | R24 < 7d (%) 1 < 14d (%) 1
2nd trimester
Resnet50 [20] 10.20 £2.29 14.08 +3.28 0.440 44.4 77.8
USFM [13] 59.04 £5.65 63.72+5.85 —10.467 0.0 0.0
EchoNet [17] 9.53 +2.60 14.57£4.50 0.400 55.6 77.8
ViFi-CLIP [21] 5224+1.09 7.04+155 0.881 78.9 94.7
Qwen-VL [3] 11.81 £1.99 14.54+1.89 0.403 38.9 55.6
SelectGA (ours)| 5.89+2.13 10.80£3.50 0.671 83.3 83.3
3rd trimester
Resnet50 [20] 15.60 £ 3.23 20.76 £3.28 0.003 38.9 55.6
USFM [13] 17.34 £ 3.34 22.40+3.49 —-0.161 27.8 50.0
EchoNet [17] 13.45 +£2.47 17.05 +£2.42 0.327 38.9 61.1
ViFi-CLIP [21] 20.46 £4.35 27.21 £2.42 —1.142 23.5 41.2
Qwen-VL [3] 27.65 £5.03 34.93+5.22 —1.822 22.2 33.3
SelectGA (ours)|13.32 +2.38 16.71 +2.53 0.354 44.4 55.6
Spain Center (high-resource)
Resnet50 [20] 14.84 £2.64 19.52£2.79 0.839 34.8 56.5
USFM [13] 45.12£5.14 51.41+£490 —-0.116 4.3 13.0
EchoNet [17] 11.07 £2.11 15.01 £2.30 0.905 52.2 73.9
ViFi-CLIP [21] 1542 £3.64 23.30+4.69 0.771 47.8 60.9
Qwen-VL [3] 21.78 £4.32 30.08 £5.00 0.618 34.8 43.5
SelectGA (ours)|10.18 +2.19 14.62 +2.41 0.910 60.9 65.2
Kenya Center (low-resource)
Resnet50 [20] 9.47+2.87 14.04£4.49 0.863 53.8 84.6
USFM [13] 25.93 £8.62 40.48 £12.01 —0.137 30.8 46.2
EchoNet [17] 12.23 £3.38 17.27+5.11 0.793 38.5 61.5
ViFi-CLIP [21] 7.09+1.50 893+1.96 0.945 61.5 84.6
Qwen-VL [3] 16.10 £ 3.06 19.52+3.40 0.736 23.1 46.2
SelectGA (ours)| 8.59+2.72 13.04+3.90 0.882 69.2 76.9
Overall

Resnet50 [20] 12.90 £2.03 17.73+£2.38 0.851 41.7 66.7
USFM [13] 38.19£4.78 47.76 £5.06 —0.082 13.9 25.0
EchoNet [17] 11.494+1.82 15.86+2.45 0.881 47.2 69.4
ViFi-CLIP [21] 12.41 +2.48 19.38 £3.74 0.822 52.8 69.4
Qwen-VL [3] 19.73 £3.01 26.75+3.79 0.661 30.6 44.4
SelectGA (ours)| 9.60+1.71 14.07 +2.07 0.906 63.9 69.4

Table 3: Ablation study of the proposed model framework. We assess the con-
tribution of the Anatomically Guided (AG) selector and Diversity Guided (DG)
Selector to the overall performance.

Components ‘AG‘DS‘ MAE | RMSE | R2t < 17d (%) T < 14d (%) 1
Resnet50 X | x| 13.174+2.12 18.31+2.65 —0.061 44.4 66.7
w/ WAA X | x| 12904 2.03 17.73+2.38 0.851 41.7 66.7
w/ WAA + AG| v | x | 10.96 £+ 2.12 16.83 +3.10 0.866 55.5 72.2
SelectGA vV v ]960+1.71 14.07 £2.07 0.906 63.9 69.4
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(9.60 days) and RMSE (14.07 days) while maintaining the highest R2? value
(0.906), representing a 16.4% improvement in MAE over the next best per-
former, EchoNet (11.49 days). Notably, Select GA shows consistent performance
with 63.9% of predictions within a 7 days error — a 21% relative improvement over
ViFi-CLIP’s 52.8%. When evaluated across trimesters and geographical centers,
SelectGA reveals its robustness in adapting to varying clinical conditions. In the
more challenging 3rd trimester predictions, SelectGA outperforms all competi-
tors with an MAE of 13.32 days. In terms of geographical performance, SelectGA
displays cross-center generalization, achieving the best performance at the Spain
center (10.18 days MAE, R2=0.910) while remaining competitive at the Kenya
center with just slightly higher error than the best performer ViFi-CLIP (8.59 vs.
7.09 days MAE). The qualitative results reported in Figure 2 demonstrate the
effectiveness of our method in identifying and prioritizing more frames from the
blind sweep videos that contain the fetal anatomical structures that are relevant
for GA prediction.

£
=]
=
s
-4

Random

Uniform
Uniform

Select-GA
(ours)
Select-GA
(ours)

(a) Spain Center (b) Kenya Center

Fig. 2: Qualitative results of our SelectGA method on blind sweep videos across
two centers.

Ablation Study We perform an ablation study of the different components
of our framework as highlighted in Table 3. The integration of AG (Anatom-
ically guided selector) which filters frames that contain fetal anatomical struc-
tures, significantly boosts performance by 16%, particularly in the proportion
of predictions within 14 days (72.2%). Our full SelectGA framework, which in-
corporates DS (diversity guided selection of optimal frames based on dissim-
ilarity), significantly boosts the baseline MAE performance by 27.1%. This
highlights the effectiveness of maximizing the information passed through the
model for the GA prediction task, while preventing the selection of uninfor-
mative frames. We also assessed the effect of the clustering initialization as a
measure of the model’s uncertainty for 5 runs. The resulting variance for these
runs were [2.9618,2.8493,2.9618, 2.8866, 2.9344] with a Spearman correlation of
0.307 between the MAE and the variance.



Adaptive Frame Selection for Gestational Age Estimation 9
4 Conclusion

We propose SelectGA, a framework that locates important anatomical regions
in frames of blind sweep ultrasound videos and increases the diversity of the
chosen subsets.This maximizes the information the model needs for accurate
prediction in limited data settings and reduces the redundancy inherent in blind
sweep ultrasound. Through extensive experiments, our framework achieved clini-
cally relevant predictions, outperforming existing strategies by 27% on the MAE.
Moreover, our framework exhibited competitive performance under varying clin-
ical conditions. Notably, the pretrained Universal Ultrasound Foundation Model
(USFM), showed particularly low performance. Future work could develop better
generalizable models for automated fetal analysis. Moreover, initial experiments
of uncertainty estimation showed that a correlation exists between results for
different clustering runs, which will be further investigated in future work. In
conclusion, our framework addresses key challenges in blind sweep ultrasound
analysis that is practical for low-resource settings.
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