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Abstract. Understanding medical ultrasound imaging remains a long-
standing challenge due to significant visual variability caused by differ-
ences in imaging and acquisition parameters. Recent advancements in
large language models (LLMs) have been used to automatically gener-
ate terminology-rich summaries orientated to clinicians with sufficient
physiological knowledge. Nevertheless, the increasing demand for im-
proved ultrasound interpretability and basic scanning guidance among
non-expert users, e.g., in point-of-care settings, has not yet been ex-
plored. In this study, we first introduce the scene graph (SG) for ultra-
sound images to explain image content to non-expert users and provide
guidance for ultrasound scanning. The ultrasound SG is first computed
using a transformer-based one-stage method, eliminating the need for
explicit object detection. To generate a graspable image explanation for
non-expert users, the user query is then used to further refine the ab-
stract SG representation through LLMs. Additionally, the predicted SG
is explored for its potential in guiding ultrasound scanning toward miss-
ing anatomies within the current imaging view, assisting ordinary users
in achieving more standardized and complete anatomical exploration.
The effectiveness of this SG-based image explanation and scanning guid-
ance has been validated on images from the left and right neck regions,
including the carotid and thyroid, across five volunteers. The results
demonstrate the potential of the method to maximally democratize ul-
trasound by enhancing its interpretability and usability for non-expert
users. Project page: https://noseefood.github.io/us-scene-graph/

Keywords: Ultrasound Image Analysis · Scene Graph · Point-of-Care
Ultrasound.

1 Introduction

Medical ultrasound (US) is widely used in modern clinical practice for examining
internal organs such as the carotid, thyroid, and liver. With its accessibility and
portability, US imaging has the potential for widespread deployment, making it
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more universally available. However, interpreting US images requires substan-
tial experience due to significant visual variability stemming from differences
in imaging and acquisition parameters. Unlike CT and MRI, US interpretation
is less intuitive due to its limited field of view and lack of 3D structural in-
formation. Therefore, effective US image explanation and scanning guidance are
essential for broader adoption, particularly in point-of-care ultrasound (POCUS)
settings [24,2,16,5] and for self-learning of anatomy and physiology among non-
experts.

Drawing inspiration from scene graph (SG) technology in classical computer
vision [8,14,12] and emerging surgical data science [21,25,23,31,13], this approach
effectively summarizes key objects and their relationships within images. There-
fore, an intuitive image explanation can be generated by leveraging the relations
defined in the predicted SG. Unlike recent efforts focused on comprehensive
report generation using large language models (LLMs) [11,17], computing a con-
ceptualized SG representation for individual images offers greater flexibility. A
comprehensive US report with medical terminology may be demanded by clin-
icians but can be less intuitive for non-expert users. A recent effort pioneering
introducing SG to describe the objects and their relations in CT image has been
reported in [26]. In contrast to a comprehensive summary, an SG representation
provides a highly conceptualized summary, emphasizing only key information.
This intermediate representation can be seamlessly adapted for various down-
stream tasks, such as US image summarization or probe motion guidance for
medical student training, by further integrating the full-level prior anatomical
knowledge.

Ultrasound is a 2D cross-sectional image, unlike natural images that feature a
distinct foreground and background. This characteristic, along with the relatively
stable anatomical structure, simplifies object relationship extraction compared
to natural images. Due to the low-contrast image, objective detection in US
images is relatively challenging. In this study, we employ the state-of-the-art
RelTR [7] for ultrasound SG generation. This single-stage transformer-based
approach eliminates the need for explicit object detection, enabling efficient and
direct relationship extraction.

To demonstrate the impact of SG representation in US imaging, this study
introduces a novel method that leverages highly conceptualized SGs for realiz-
ing two critical tasks essential to advancing the democratization of portable and
accessible US imaging: (1) generating graspable US explanation for ordinaries to
self-learn anatomical and physiological knowledge, which is also particularly use-
ful for POCUS scenarios, and (2) providing scanning guidance to reveal missing
anatomies in the current imaging view, ensuring the displayed content aligns with
user preferences. Both US summary [10,17,33] and probe guidance [32,22,30,15]
tasks are important and have been investigated. However, to the best of our
knowledge, this is the first work introducing SG and LLMs to boost intuitive US
explanation and scanning guidance.
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Fig. 1. An overview of the proposed framework.

2 Methodology

In this section, we first introduce the process of SG prediction for US images
acquired from the carotid artery scan. Then, we provide insights into how the
predicted SG can be integrated into an LLM to facilitate US image understanding
tasks, as illustrated in Fig. 1.
Object Detection and Scene Graph Prediction To predict a scene graph
for a US image, triplets in the format of <entity1− predicate− entity2> should
be defined to capture interactions between key anatomical structures within
the scanning field of view. For cross-sectional carotid artery scanning, we select
five representative anatomical structures as entities: "Carotid Common Artery"
(CCA), "Internal Jugular Vein" (IJV), "Cartilage Ring" (CR) above the Tra-
chea, "Thyroid" (Th), and "Vertebral Body" (VB). Additionally, we define three
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interaction modes as predicates: "is contiguous with", "partially encases", and
"is superior to". These predicates can effectively characterize the anatomical
structure-based relationships among the five selected entities in US images.

Unlike conventional two-stage SG prediction methods, in this study, we em-
ploy the state-of-the-art RelTR [7]. RelTR follows a single-stage approach, which
can simultaneously detect the entities and predict SG rather than treating them
as separate sequential steps. This design enhances efficiency by directly predict-
ing relationships between anatomical structures without relying on intermediate
procedures. As shown in Fig. 1 (a), once an SG is predicted for the US image,
it can subsequently be parsed into multiple triplet texts (referred to as triplets
for simplicity). Based on the object detection results and anatomical knowledge
prior, we can identify whether the scan is performed on the neck’s left or right
lateral side. Furthermore, by comparing two consecutive detections of the target
anatomy, we can also identify the probe’s lateral movement. In the downstream
tasks, the grounding prompt, which enables the LLM to consider the current
imaging results before responding to the user’s query, will consist partially or
entirely of the extracted triplets, lateral side, and lateral movement information.

US Image Summarization This task aims to generate US summaries that
emphasize the specified target of interest. In this context, given a user’s query
specifying a focus entity, a locally deployed LLM is tasked with providing a
coherent summary of the US image. This summary includes a general description
of the image, the focus area, and the relationships with adjacent entities. These
requirements are encapsulated into a fixed task instruction prompt. To situate the
LLM into the scanning loop, as shown in Fig. 1 (b-Task I), a grounding prompt
comprising triplets and lateral sides is fed into the LLM to guide the task. This
approach allows the LLM to understand the user’s intent and implicitly prune
the triplets, retaining only the entities directly related to the focus entity. By
doing so, the LLM can generate coherent sentences that provide a personalized,
intuitive explanation tailored to the region of the user’s interest. This method
enables even non-expert users to gain a clearer understanding of the US image
and to learn anatomical knowledge of themselves.

US Scanning Guidance Building upon the previous SG prediction and US
image summarization tasks, the predicted SG can also be utilized to provide
scanning guidance, helping non-expert users to operate a portable US probe to
reveal the missing anatomies in the current imaging view during self-scanning.
Similar to the US image summarization task, both the user queries about the
desired anatomy to scan or the anatomy outside the imaging view, and a new
task instruction prompt for the US scanning guidance task will go through the
LLM. However, to complete the task, in addition to the tirplets and lateral sides,
the grounding prompt also incorporates lateral movement to indicate the relative
motion direction of the US probe. The LLM then analyzes the scene graph to
identify the missing entities [see the case in Fig. 1 (b-Task II) where CR is not
present in the current US image]. By leveraging both the structural information
from the SG and the scanning motion data indicated by lateral movement, the
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LLM generates natural-language motion guidance, assisting the users in finding
an imaging view that aligns with their preferences.

3 Experiments and Results Analysis

3.1 Implementation Details

Model Selection We use hyperparameters similar to those in RelTR [7] for
our experiments. The SG prediction network is trained for 800 epochs with a
batch size of 16, on a workstation equipped with an RTX 4080 Super GPU. The
initial learning rate for the transformer is 10−4 and is reduced by a factor of 0.1
after 200 epochs to ensure stable convergence. Since this work is aimed at po-
tential applications in portable US devices, we prioritize “lightweight" LLMs like
LLaMa [29], Qwen [3], Gemma [28], Mathstral4 and the distilled DeepSeek R1
using the Qwen model (DS-R1-Qwen) [9]. These lightweight models are quan-
tized versions optimized for efficiency, reducing computational demands while
maintaining performance, making them more suitable for real-time processing in
resource-constrained environments. Additionally, we also employ high-capacity
LLMs, such as Gemini 2.0 Flash [27], and Grok 3 as reference models.
Data Acquisition The carotid artery US images were acquired using Siemens
Juniper US Machine (ACUSON Juniper, SIEMENS AG, Germany) equipped
with a 12L3 linear probe. The imaging and focus depths were set to 45 mm and
20 mm, respectively. A total of 289 US images were collected and annotated,
with the training set comprising 262 images (resolution: 829×770 pixels) from
five volunteers. An additional 27 images collected from different volunteers
were used for testing. Due to the lack of mature tools for scene graph anno-
tation, we developed a lightweight annotation tool specifically for our 2D US
dataset. It worth noting that, in addition to object detection annotations, scene
graph annotation requires labeling triplets (<subject − predicate − object>),
which makes the annotation process significantly more labor-intensive. More-
over, in SG prediction tasks, the predicate in each triplet is closely tied to the
spatial relationships between entities in the image. As a result, standard data
augmentation techniques used in traditional computer vision tasks are mostly
inapplicable, with horizontal flipping being one of the few exceptions. These
challenges have led to a relatively small dataset size.

3.2 Object Detection and Scene Graph Prediction

Evaluation Metrics To evaluate object detection performance, we employ the
widely adopted metric mean Average Precision (mAP). Specifically, we use two
types of Average Precision (AP): AP@50, which is computed with an Intersection
over Union (IoU) threshold of 50%, and AP@[50:95], which averages precision
across multiple IoU thresholds ranging from 50% to 95%, providing a stricter

4 https://mistral.ai/
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assessment, as outlined in the COCO evaluation protocol [19]. For relation pre-
diction, we employ Recall@K (R@K) [20] and mean Recall@K (mR@K) [6].
Given that the carotid US dataset contains a maximum of 7 relations, we set K
= 5 and K = 20 for evaluation, respectively.

Given that the proposed method is intended for deployment on resource-
constrained portable US devices, it is crucial to balance model size and pre-
dictive performance, ensuring the network remains compact while maintaining
optimal accuracy. To achieve this, we conduct experiments to evaluate the effect
of varying the number of encoder and decoder layers in RelTR’s transformer
architecture [7] on both object detection and SG prediction. Table 1 summarizes
the performance of object and relation detection across different configurations
of transformer encoder and decoder layers. It is noted that the model with four
layers achieved the best overall performance, yielding the highest AP@[50:95]
(34.1% vs. 32.4% for the second best) and AP@50 (77.1% vs. 70.3%) in object
detection. It also demonstrated consistently superior performance in relation de-
tection, except for a marginal 0.4% decrease in mR@5 compared to the five-layer
model. While increasing the model size to five layers slightly enhanced relation
detection in terms of mR@5, it resulted in a noticeable decline in both object
and relation detection performance for all other evaluation metrics. Given the
limited dataset, a four-layer encoder-decoder transformer strikes the best bal-
ance between object and relation detection, making it the most suitable choice
for this setting. Therefore, we adopt this configuration as the default setting for
all subsequent experiments.

Table 1. Results for the object detection and scene graph detection

No. of layers Params Object Detection Relation Detection

AP50:95 ↑ AP50 ↑ R@5↑ mR@5↑ R@20↑ mR@20↑

3 layers 44M 31.3 65.7 55.9 55.3 63.4 61.3
4 layers 50M 34.1 77.1 59.9 62.3 69.2 74.5
5 layers 57M 32.4 70.3 52.2 62.5 61.4 68.5

3.3 Scene Graph-Powered US Understanding with LLMs

Evaluation Metrics To evaluate the accuracy of LLM-generated text for the
tasks of US image summarization and scanning guidance [see Fig. 1 (b)], we
use a combination of subjective assessment (referred to as Acc) and objective
metrics. Subjective evaluation is conducted by third-party experts, who assess
whether the LLM accurately follows the task instruction prompt and executes
the intended operation correctly. Objective evaluation, on the other hand, re-
lies on widely used NLP metrics, including METEOR [4] and ROUGEL [18],
which measure the linguistic similarity between the LLM-generated output and
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Table 2. Evaluation results of different LLM models on Task I and Task II, using
Accuracy (Acc), METEOR, and ROUGEL. The parentheses indicate model parameter
sizes (e.g., LLaMA 3.2 (1B) = 1B parameters). †: High-capacity LLMs.

Model Task I Task II

Acc ↑ METEOR↑ ROUGEL↑ Acc ↑ METEOR↑ ROUGEL↑

LLaMA 3.2(1B) 0.265 0.550 0.387 0.408 0.392 0.300
LLaMA 3.2(3B) 0.531 0.534 0.365 0.347 0.403 0.390
LLaMA 3.1(8B) 0.735 0.489 0.335 0.633 0.395 0.290
Mathstral v0.1(7B) 0.612 0.545 0.384 0.327 0.447 0.496
DS-R1-Qwen(7B) 0.551 0.590 0.576 0.265 0.400 0.478
Qwen 2.5(14B) 0.755 0.709 0.641 0.429 0.404 0.423
Gemma 2(27B) 1.000 0.590 0.615 0.469 0.401 0.508
†Gemini 2.0 Flash 0.980 0.589 0.736 0.592 0.452 0.623
†Grok 3 1.000 0.880 0.841 0.776 0.490 0.665

reference texts. The reference texts required for evaluation were generated using
GPT-4o [1], followed by manual verification to ensure accuracy and reliability.

Task I: US Image Summarization The results (see Tab. 2) show that the
large-scale models can significantly outperform lightweight quantized models in
task completion, particularly Grok 3, which achieves the highest scores across
all metrics. Among lightweight models, Qwen 2.5 (14B) and Gemma 2 (27B)
achieve relatively strong performance but still fall behind large-capacity models
by a noticeable margin in terms of the METEOR (Grok: 0.880 vs. 0.709 for the
second best) and ROUGEL (Grok: 0.841 vs. 0.641 for the second best) met-
rics. These findings highlight a clear trend: as model size increases, improved
reasoning capabilities enhance instruction execution, making large models the
preferred choice for more complex and demanding tasks. For a more intuitive
understanding of this trend, one can refer to the US image summarizations from
different LLMs in Fig. 2 for further details.

Task II: Scanning Guidance Compared to Task I, Task II requires greater
logical reasoning capabilities from the LLMs to ensure accurate execution. As a
result, all models exhibit lower overall scores across Accuracy, METEOR, and
ROUGEL. Among all models, Grok 3 continues to outperform the others (Acc:
0.776 vs. 0.633 of the second best), showcasing its superior ability to handle
complex reasoning tasks. However, lightweight quantized models such as Qwen
2.5 (14B) and Gemma 2 (27B) maintain relatively high accuracy, similar to
their performance in Task I. Therefore, in resource-constrained settings, Qwen
2.5 (14B) and Gemma 2 (27B) can offer a practical solution; with appropriate
quantization for local deployment, these two models can perform inference using
only 8GB and 14GB of VRAM, respectively.
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Fig. 2. An example of US image summarization generated by different LLMs in Task I,
with key medical terms highlighted for clarity and comparison. Text highlighted with
a gray background indicates areas containing significant errors.

4 Discussion and Conclusion

This study introduces semantic scene graphs for ultrasound images to provide in-
tuitive image explanations and effective scanning guidance for individuals with
limited physiological knowledge. The transformer-based RelTR model is used
to predict the semantic SG of US images, capturing key anatomical structures
and their relationships. This information-rich SG is further used with recent
advanced LLMs to demonstrate that the system can help non-expert users bet-
ter understand and analyze US images. While the proposed framework shows
promising results for carotid artery scans, the current method is only validated
on carotid images. To have a robust performance across different anatomies, a
large dataset, including images of different anatomies, should be collected.
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Nevertheless, this paper demonstrates the promising potential of an SG-
guided LLM framework for interpreting US images and providing scanning guid-
ance. Given the inherent scarcity of ultrasound data, the proposed framework
offers a practical and innovative alternative to large-scale vision-language models
(VLMs) that demand extensive ultrasound datasets for training. Furthermore,
these applications show great potential for promoting self-learning of anatomical
and physiological knowledge, especially among young individuals.
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