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Abstract. Diffusion tensor imaging (DTI) and functional MRI (fMRI)
provide complementary views of the brain by revealing the physical struc-
ture connectivity (SC) between brain regions and functional connectivity
(FC) between those regions during neural processing. Previous evidence
has shown that fusing the two modalities facilitates the identification
of abnormal connectivity associated with neurocognitive disorders. How-
ever, existing fusion approaches are generally performed in Euclidean
space and thus cannot effectively capture the intrinsic hierarchical orga-
nization of structural/functional brain networks. To this end, we propose
a novel hyperbolic kernel graph convolutional network with SC-FC Cou-
pling (HKC) for neurocognitive impairment analysis. The HKC consists
of a hyperbolic kernel graph convolutional network for extracting local-
to-global features from DTI and fMRI, an SC-FC coupling module that
models global SC-FC interactions based on encoded DTI and fMRI fea-
tures, and a hyperbolic neural network predictor for classification. Our
HKC captures both local and global dependencies among structurally
and functionally connected brain regions while preserving the hierarchi-
cal organization of brain networks. We evaluate HKC on paired DTI
and fMRI data from 68 individuals with HIV-associated asymptomatic
neurocognitive impairment and 69 healthy controls, with experimental
results suggesting its superiority over state-of-the-art methods. Addition-
ally, HKC identifies key SC-FC patterns in ANI, highlighting the visual
network and fronto-cerebellar connections as critical biomarkers.
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1 Introduction

Diffusion tensor imaging (DTI) and functional MRI (fMRI) provide comple-
mentary views of the brain [24], as they reveal the structure connectivity (SC)
between brain regions and the function connectivity (FC) among those regions
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Fig. 1. Illustration of the proposed HKC framework, consisting of (1) a hyperbolic ker-
nel graph convolutional network (HKGCN) to extract features from fMRI and DTI, (2)
an SC-FC coupling module for feature fusion by capturing global SC-FC interactions,
and (3) a hyperbolic neural network (HNN) for prediction.

during neural processing. Existing studies have shown that integrating fMRI and
DTI can improve the identification of abnormal connectivity associated with neu-
rocognitive disorders. However, current fusion methods are generally formulated
in Euclidean space, which struggles to capture the intrinsic non-Euclidean hier-
archical nature of structural or functional brain networks, limiting their ability
to model complex cross-modality interactions.

Extensive evidence has shown that the brain exhibits a hierarchical organiza-
tion, spanning both structure and function connectivity networks [23, 30]. Most
existing methods are designed in Euclidean space, causing distortion when em-
bedding hierarchical data [20]. Hyperbolic space, with its negative curvature and
exponential volume growth, provides a theoretically grounded and low-distortion
solution for encoding brain SC and FC networks [12]. Nevertheless, existing
methods [38] primarily rely on hyperbolic graph neural network (HGCN) for
feature encoding and fusion, with high computational complexity due to expo-
nential and logarithmic mappings in the hyperbolic space [3]. Moreover, these
methods usually fail to explicitly capture local-to-global dependencies among
structurally and functionally connected brain regions.

To this end, we introduce a novel Hyperbolic Kernel graph convolutional
network with SC-FC Coupling (HKC) for automated neurocognitive impair-
ment analysis. HKC consists of three key components: (1) a hyperbolic kernel
graph convolutional network (HKGCN) to extract features from fMRI and DTI,
(2) an SC-FC coupling module to capture global SC-FC interactions based on
HKGCN-encoded features, and (3) a hyperbolic neural network predictor for
classification. Specifically, we design HKGCN by incorporating hyperbolic ker-



Hyperbolic Kernel GCN with Structure-Function Coupling 3

nels to avoid complex hyperbolic operations while modeling complex hierarchical
structures in brain networks. Furthermore, this hyperbolic kernel enables us to
capture the local-to-global interactions within brain networks. Additionally, the
SC-FC coupling module leverages the HKGCN-extracted SC and FC features
to explicitly model the global dependencies between them. This enables a more
precise characterization of SC-FC interactions, improving the interpretability of
neurocognitive analysis. To the best of our knowledge, this is among the first
attempts to integrate hyperbolic kernels with GCNs for neurocognitive impair-
ment analysis. Experiments on 137 subjects with paired DTI and fMRI data
validate the superiority of HKC over several state-of-the-art (SOTA) methods.

2 Methodology

Data and Image Preprocessing. An HIV-associated neurocognitive impair-
ment dataset is involved, with paired resting-state fMRI and DTI from 68 in-
dividuals with HIV-associated asymptomatic neurocognitive impairment (ANI)
and 69 healthy controls (HCs). DTI is processed using PANDA toolbox [7] with
a standard pipeline: brain extraction, bias field correction, eddy-current and mo-
tion correction, diffusion gradient strength adjustment, and co-registration of the
anatomical image to diffusion space with AAL atlas to parcellate the brain into
116 regions-of-interest (ROIs). Three metrics are extracted: fiber number (FN),
fractional anisotropy (FA), and fiber length (FL). We construct an SC graph
for each subject, with each node represented by concatenated FN, FA, and FL
features, and each edge denoted as the sum of the three metrics. The fMRI data
is preprocessed using DPARSF [36], including removing the first 10 volumes for
magnetization equilibrium, motion correction, bandpass filtering (0.01–0.1 Hz),
nuisance regression, and MNI normalization. Using the AAL atlas, the mean time
series for each ROI is extracted, and the FC graph is then constructed based
on Pearson correlation (PC) coefficients between regional time series, with both
node features and the adjacency matrix derived from the PC matrix.

Problem Formulation. We formulate DTI and fMRI feature fusion as a cross-
modality graph embedding learning problem. This is achieved by integrating SC
graphs derived from DTI and FC graphs from fMRI to capture local-to-global
interactions among ROIs, with each ROI corresponding to a specific node. De-
note an SC graph as GS = (AS ,XS) and an FC graph as GF = (AF ,XF ), where
XS ∈ R116×348 and XF ∈ R116×116 are feature matrices, and AS ∈ R116×116 and
AF ∈ R116×116 are adjacency matrices. We aim to train a model that learns their
cross-modality interactions via an SC-FC coupling graph GC = (AC ,XC) to gen-
erate fused graph embeddings, followed by a predictor for disease identification.

Proposed Method. As shown in Fig. 1, the proposed HKC framework con-
sists of three key components: (1) feature extraction using HKGCN, which lever-
ages hyperbolic kernels to learn hierarchical representations of brain SC and FC
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graphs; (2) SC-FC coupling for modeling global interactions between SC and
FC graphs, thereby improving biological interpretability and multimodal data
fusion; and (3) prediction via a new hyperbolic neural network (HNN).

(1) Feature Extraction with HKGCN. To effectively model the hierar-
chical structures of DTI and fMRI data, we design a novel HKGCN for multi-
modality feature learning. The HKGCN innovatively integrates GCN with hy-
perbolic kernels to encode DTI and fMRI data in hyperbolic space. The Poincaré
ball defined as Bnc = {x ∈ Rn : c‖x‖2 < 1, c > 0}, is widely used in hyperbolic
models, where −c denotes the negative curvature [9, 12]. While the Poincaré
ball can encode hierarchical structures, conventional hyperbolic GCN (HGCN)
methods rely on Möbius operations that are computationally intensive [3]. To
address this issue, we introduce hyperbolic kernels based on the tangent space
(Euclidean space) of the Poincaré ball using logarithmic map [9,12], defined as:

log
c
0(x) = tanh

−1(√
c ‖x‖

) x
√
c ‖x‖

. (1)

Using this map, our HKGCN is capable of effectively reducing computational
complexity by avoiding Möbius transformations of the Poincaré ball.

Inspired by classic kernels [6,27], we adopt two hyperbolic kernels, i.e., hyper-
bolic radial basis function (HRBF) kernel and hyperbolic arc-cos (HAC) kernel,
to capture local and global geometric structures. Let p(w) represent the proba-
bility density function. These two kernels are defined as:

k
HRBF

(xi,xj) =

∫
e
jw>(logc0(xi)−logc0(xj))p(w)dw, (2)

k
HAC

(xi,xj) = 2

∫
φ
HAC

(xi,w)φ
HAC

(xj ,w)p(w)dw. (3)

Here, the feature mapping function is defined as:

φ
HAC

(x,w) = Θ(w
>

log
c
0(x) + b)(w

>
log

c
0(x) + b), (4)

with Θ(·) = 1
2
(1 + sign(.)). By substituting Θ into Eq. (4), we can obtain

φHAC(x,w) = ReLU(w> logc0(x) + b). Utilizing random Fourier features [27],
the two kernels can be approximated as:

Φ
HRBF

(x) =

√
2

D
cos(W

>
log

c
0(x) + b), Φ

HAC
(x) =

√
2

D
ReLU(W

>
log

c
0(x) + b), (5)

whereW = [w1, . . . ,wD] and b are trainable parameters, andD is kernel mapping
dimension. Given a graph G=(A,X) in Euclidean space, we integrate hyperbolic
kernels into GCN [18] for feature learning, yielding a single-layer HKGCN:

X̃ = log
c
0(P (X)), Φ(A,X) = ReLU(ÂX̃W + b) + α cos(ÂX̃W

′
+ b
′
), (6)

where W and W ′ are trainable weight matrices, b and b′ are trainable bias
terms, and Â is the normalized adjacency matrix. The projection function
P (X) = X√

c‖X‖ − ε if
√
c‖X‖ ≥ 1, otherwise P (X) = X, ensures that the data

is inside the Poincaré ball. Here, ReLU(·) and cos(·) are applied to aggregate
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neighborhood features in SC or FC graphs. ReLU(·) approximates the HAC
kernel, capturing global angular similarity in the tangent space and enabling
the model to learn global nonlinear relationships. And cos(·) approximates the
HRBF kernel, which decays rapidly with geodesic distance and captures local
interactions. The hyperparameter α balances the contributions of the two ker-
nels. We can construct a multi-layer HKGCN Ψ by stacking multiple layers. And
HKGCN-encoded SC and FC graph embeddings are denoted as X ′S = Ψ(AS ,XS)

and X ′F = Ψ(AF ,XF ). By integrating hyperbolic kernels, our HKGCN leverages
kernel-based feature transformation to aggregate both local and global informa-
tion from neighboring nodes at each layer. Meanwhile, its multi-layer architec-
ture progressively preserves local-to-global interactions in brain networks, while
hyperbolic kernels naturally model their intrinsic hierarchical organization.

(2) SC-FC Coupling. To model global interactions between SC and FC
graphs, we create a new SC-FC coupling graph GC through an inner-product
operation between normalized SC and FC graph embeddings, defined as AC =
X′F
‖X′

F
‖ ·

X′>S
‖X′

S
‖ , where AC∈ R116×116 is the adjacency matrix of the SC-FC cou-

pling graph, encoding global SC-FC interactions across ROIs. To represent each
node/ROI in this coupling graph, we concatenate the learned SC and FC fea-
tures for each node to obtain the new node feature XC = [XS ,XF ]. We then
apply multi-layer HKGCN Ψ to obtain fused representation XCP = Ψ(AC ,XC).
By constructing the SC-FC coupling graph, we can explicitly capture SC-FC
interactions. Compared to traditional statistical approaches (e.g., Pearson cor-
relation [16]) that rely on predefined assumptions, we construct a data-driven
SC-FC coupling graph, while the integration of HKGCN and SC-FC coupling
allows for effective modeling of hierarchical structures of brain networks [8, 15].

(3) Prediction with HNN. Given the feature XCP ∈ R116×64 extracted
from the SC-FC coupling module, we average it into a vector XH ∈ R64. To
align with the hyperbolic nature of HKGCN-extracted representations, we de-
sign HNN for classification. Unlike conventional predictors that apply fully con-
nected layers directly to GCN-extracted features, HNN operates in the tangent
space to maintain geometric consistency and hierarchical properties [9] learned
by HKGCN. In each layer, we apply the following transformation:

XHF = δ
(
W
>

log
c
0(P (XH)) + b

)
, (7)

where δ(·) is the activation function (ReLU), and P (.) ensures the input re-
mains in the Poincaré ball. We stack two layers of this transformation. The final
representationXHF is then fed into a softmax layer for classification with a cross-
entropy loss. Compared to existing hyperbolic networks [12], our HNN decreases
the computational cost by avoiding complex transformations in hyperbolic space.

Implementation. In the proposed HKC, the HKGCN consists of two hyperbolic
kernel layers, both equipped with a hidden dimension of 64 and a rescaling factor
α = 0.01. The HNN contains two layers (each with a hidden dimension of 32).
Both HKGCN and HNN utilize the curvature parameter c = 10. The Adam
optimizer is used with a learning rate of 0.0002 and a weight decay of 1× 10−4.
The batch size is set to 128, with a training epoch of 50.
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Table 1. Results (%) of different methods in ANI vs. HC classification. ‘*’ denotes
that the HKC and a competing method are significantly different (p < 0.05 via t-test).

Method AUC ACC F1 BAC SEN SPE PRE p-value
SVM [26] 54.55∗4.04 56.662.86 56.942.56 57.662.56 58.034.19 57.216.74 58.933.39 < 0.001
RF [1] 54.92∗3.19 50.642.47 51.035.15 53.522.62 55.457.31 51.606.21 53.584.64 < 0.001
XGBoost [4] 61.06∗3.19 58.091.72 57.562.61 58.841.11 58.423.88 59.274.23 59.542.12 < 0.001
LSTM [14] 64.68∗1.61 64.671.95 62.495.11 65.401.52 63.988.25 66.815.67 68.031.88 0.002
STGCN [37] 53.94∗3.74 52.502.08 52.180.86 53.202.17 55.233.19 51.187.33 52.562.13 < 0.001
GCN [18] 62.94∗2.58 62.063.23 60.831.98 62.273.53 61.244.66 63.309.48 63.924.14 < 0.001
GAT [31] 67.95∗4.36 62.063.23 60.831.98 62.273.53 61.244.66 63.309.48 63.924.14 0.030
GraphSAGE [13] 64.26∗2.89 57.994.64 56.504.33 58.643.46 58.6412.77 58.6318.32 60.687.48 < 0.001
GIN [35] 66.304.47 59.414.21 59.883.92 60.331.92 63.076.06 57.599.80 61.865.10 0.011
HGCN [3] 63.71∗2.77 65.851.06 62.495.57 65.210.76 60.7011.78 69.7312.68 69.137.47 < 0.001
BrainNetCNN [17] 63.34∗4.70 66.434.46 66.165.14 65.754.61 69.767.64 61.747.09 68.624.34 < 0.001
BrainGNN [19] 56.43∗4.22 51.414.13 52.074.20 52.434.00 54.694.67 50.176.12 52.874.92 < 0.001

HKC (Ours) 70.561.61 68.652.07 66.712.87 68.461.55 66.656.67 70.287.76 71.154.50 –

Fig. 2. Visualization of features generated by nine deep learning methods and the
proposed HKC through t-SNE [21] in ANI vs. HC classification.

3 Experiment

Experimental Settings. We compare our HKC with three conventional meth-
ods (i.e., SVM [26], RF [1], and XGBoost [4]) with 1,168-dimensional node-
and graph-level features from SC and FC graphs as input, seven deep learn-
ing methods (i.e., LSTM [14], STGCN [37], GCN [18], GAT [31], Graph-
SAGE [13]), GIN [35], and HGCN [3]), and two SOTA methods designed for
brain network analysis (i.e., BrainNetCNN [17] and BrainGNN [19]). The
two methods (i.e., LSTM and STGCN) take BOLD signals derived from fMRI
as input. The remaining deep methods share the same graph input as our HKC.
For the competing deep learning methods, we fine-tune their hyperparameters
to ensure that their training parameters are comparable to ours. All methods
are evaluated using a 5-fold cross-validation strategy, with mean and standard
deviation results reported. Seven evaluation metrics are used: area under the
ROC curve (AUC), accuracy (ACC), F1 score (F1), balanced accuracy (BAC),
sensitivity (SEN), specificity (SPE), and precision (PRE).

Results and Analysis. Results of 13 methods in ANI vs. HC classification
are given in Table 1. We can see that multi-modal methods outperform single-
modal methods (LSTM and STGCN), demonstrating the benefit of SC and
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Table 2. Results (%) of HKC and its three variants in ANI vs. HC classification.
Method AUC ACC F1 BAC SEN SPE PRE
HKC-G 68.111.68 67.052.48 64.013.45 67.411.18 63.317.21 71.507.88 73.835.83
HKC-K 64.733.60 63.552.42 61.413.41 63.843.07 61.635.34 66.048.01 68.243.01
HKCw/oC 64.323.59 64.252.45 57.636.68 64.221.83 53.169.60 75.296.76 72.945.08
HKCw/oH 69.722.75 68.062.99 63.772.29 67.971.95 60.634.05 75.306.13 74.575.88

HKC (Ours) 70.561.61 68.652.07 66.712.87 68.461.55 66.656.67 70.287.76 71.154.50
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Fig. 3. Influence of the two parameters (i.e., α and c) on the performance of HKC.

FC feature integration. Our HKC achieves the best AUC (70.56%) and ACC
(68.65%), suggesting its effectiveness in capturing cross-modality local-to-global
interactions and hierarchical dependencies among ROIs. Additionally, HKC out-
performs SOTA BrainNetCNN and BrainGNN. The possible reason is that HKC
employs an SC-FC coupling module for feature fusion, while these two methods
rely on SC and FC feature concatenation. We conduct t-test on results achieved
by HKC and each competing method to assess their performance difference sig-
nificance, with significant results (p<0.05) marked as ‘*’ in Table 1. Table 1
suggests that HKC significantly outperforms most competing methods. Follow-
ing [5], we also visualize features extracted from the last layer of each model using
t-SNE [21] in Fig. 2. This figure shows that HKC yields more separable clusters
and clearer class-level distinctions, compared with the competing methods.

Ablation Study. To assess the impact of HKC’s key components, we compare it
to its variants: (1) HKC-G that uses GCN instead of HKGCN as backbone; (2)
HKC-K, which replaces HKGCN with HGCN; (3) HKCw/oC, which removes
SC-FC coupling and concatenates HKGCN-extracted fMRI and DTI features for
prediction; and (4) HKCw/oH that uses multilayer perceptron (MLP) instead
of HNN as the predictor. As shown in Table 2, HKC achieves the overall best
performance compared to all variants. HKC-G and HKC-K exhibit moderate
performance degradation, with AUC dropping to 68.11% and 64.73%, respec-
tively. This implies that our method effectively models the hierarchical depen-
dencies among ROIs compared to HKC-G, and better captures cross-modality
local-to-global interactions than HKC-K. The performance drop of HKCw/oC
highlights the importance of explicit SC-FC coupling in feature fusion. Addition-
ally, the slight performance decline observed in HKCw/oH suggests that HNN
better aligns with the hyperbolic geometry compared to a standard MLP.

Parameter Analysis. We analyze the impact of two hyperparameters in HKC:
curvature value c which defines the geometry of hyperbolic space, and α which
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(c)(a) (b)

Fig. 4. Top 10 discriminative connectivities identified by the proposed HKC from (a)
SC, (b) FC, and (c) SC-FC coupling graphs in ANI vs. HC classification.

scales the cosine function. The experimental results achieved by HKC with dif-
ferent parameter values are reported in Fig. 3. This figure indicates that varying
c has minimal impact, as AUC fluctuates slightly within the range of 67.17% to
70.56%, demonstrating the robustness of our method. In contrast, α influences
performance to some extent but remains stable within a certain range.

Visualization of Discriminative Connectivity. We visualize the discrimina-
tive connectivities identified by our HKC from SC and FC, and SC-FC coupling
graph embeddings through the BrainNet Viewer [34]. The SC and FC features
are extracted using the HKGCN, while SC-FC coupling features are derived from
our SC-FC coupling module. We compute PC for these three view embeddings
to generate FC, SC, and SC-FC coupling graphs, use t-test (significant level:
0.05) to identify significant connectivity differences between the two groups, and
visualize the top 10 discriminative connections in Fig. 4.

From Fig. 4, we can observe significant alterations in SC, FC, and SC-
FC coupling graphs across several key ROIs. First, SC differences are partic-
ularly evident in frontal-subcortical circuits (ACG.R-PAL.R, ACG.R-THA.R,
DCG.R-THA.R) [25] and the central executive network (CEN) (ORBinf.L-
SMG.L, PreCG.L-ORBinf.L, ACG.L-PCUN.R) [39]. Structural changes in these
regions may be associated with cognitive impairment [11,29]. Second, FC abnor-
malities are primarily observed in the occipital lobe and lingual gyrus within the
visual network (LING.L-LING.R, IOG.L-IOG.R, CAL.R-LING.L), which are re-
lated to HIV-related cognitive impairment in attention and cognitive flexibility
[28]. Meanwhile, core regions of the salience network (SN) are also altered, in-
cluding the insula and cingulate gyrus (INS-DCG), which is closely associated
with impairments in executive function and attention [2]. Third, SC-FC cou-
pling strength is altered in hippocampal-parietal (HIP-IPL) circuits, suggesting
impaired coordination between brain structure and function [22]. Additionally,
reduced fronto-cerebellar SC-FC coupling highlights the critical role of the cere-
bellum in ANI analysis, as it not only influences motor coordination and execu-
tive function but also affects cognitive and emotional regulation [32]. We further
verify the robustness of the identified discriminative connections by testing their
consistency across different data splits and weight initialization, and find that
key connections and involved regions (e.g., ACG, PCUN) remain stable across
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splits and weight initialization. These imaging biomarkers identified by our HKC
could be potentially used for automated ANI detection in clinical practice.

4 Conclusion and Future Work

This work presents a novel framework, HKC, that integrates HKGCN with SC-
FC Coupling for brain connectivity analysis. It leverages hyperbolic kernels to
capture the hierarchical structure of brain networks, while SC-FC coupling mod-
els global interactions between SC and FC. Experimental results suggest the su-
periority of HKC over SOTA methods. Future efforts will extend HKC to other
disorders to assess its generalizability across multi-site multi-modal cohorts. Ad-
ditionally, the limited sample size poses a challenge for the effective training of
deep learning models. We will address this limitation by leveraging pretrained
models [10,33] based on auxiliary data to improve model robustness.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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