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Abstract. Myocardial infarction (MI) is a significant health burden
globally. Its precise prediction is critical yet complicated by the func-
tional complexities of the heart and heterogeneous clinical presentations.
Although learning-based methods that model the 3D heart anatomy have
been widely studied, improving cardiac embeddings with localized sub-
structures in a multi-task setting, remains under-explored. In this work,
we present a novel deep learning model that produces explainable embed-
dings with high relevance to cardiac function via multi-task learning. Its
transformer-based architecture contains modules for both MI classifica-
tion and cardiac substructure prediction. By jointly learning these tasks
with shared embeddings, the model is able to better capture 3D cardiac
geometries and deformation across cardiac phases, enhancing its predic-
tive ability. We evaluate the proposed method on cardiac anatomies cap-
tured during end-diastolic and end-systolic phases from the UK Biobank
study. Compared to the existing learning-based benchmarks, our method
exhibits high predictive performance, achieving an area under the re-
ceiver operating characteristic curve for MI prediction of 0.802. We also
demonstrate the strong explainability of our model by showing that the
latent features generated under the proposed multi-task setting have a
strong and statistically significant correlation with key clinical markers,
such as ejection fraction.

Keywords: Multi-task learning - Geometric deep learning - Myocardial
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1 Introduction

One leading group of causes of mortality in the world is cardiovascular diseases,
among which myocardial infarction (MI) is one of the major threats [8]. Im-
proving the prediction of MI events at an early age can enable targeted and
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preventive therapies, enhance the average survival rates, and ease the burden on
healthcare systems. Therefore, there is a growing need to develop advanced pre-
dictive models that are capable of integrating cardiac pathophysiological details
for precise MI prediction [21].

Numerous learning-based approaches have been used to extract key cardiac
features, such as functional attributes [22,24], heart shape [1] or contours of
heart cavities [13,14], for automated cardiac disease characterization. However,
the predictive performance of these methods can be hindered by the limited in-
formation contained in handcrafted features or 2D segmentation maps. More re-
cently, deep learning techniques have shown promise for directly analyzing high-
resolution imaging data [12, 16, 23, 26, 27|. Of particular note, several geometry-
based studies have built a prediction pipeline based on 3D heart data [3,5,7,
10]. Leveraging 3D anatomy reconstructed from 2D cine cardiac magnetic reso-
nance (CMR) images, the full cardiac geometry and deformation can be modeled
for disease prediction. In [4], the authors proposed a multi-task architecture to
perform 3D anatomy modeling and MI prediction simultaneously. While the pre-
vious method seeks to explicitly model substructure information as the input for
reconstruction, this design eases the difficulty of the substructure classification
task, which may compromise cardiac feature learning.

In this paper, we propose a multi-task learning framework to enhance MI
prediction via an interpretable cardiac substructure prediction task. We build
a transformer-based network to learn clinically meaningful representations from
multi-phase biventricular anatomy in 3D point clouds. The model processes the
input data by first generating point patches and then building patch-to-patch de-
pendencies via the attention mechanism. However, for MI prediction where data
can be sparse, single-task training can yield sub-optimal and biased embeddings
[9,25]. To address this, an auxiliary substructure prediction branch is introduced
to jointly supervise the training process. By identifying localized sub-regions of
the heart, the model learns to mine anatomical details with greater diversity and
variability in a fine-grained manner. Moreover, the shared embeddings under the
multi-task setting demonstrate improved generalization and clinical reliability
by integrating individual morphological details that complement the global MI
prediction objective.

Our experimental results demonstrate that the proposed approach outper-
forms previous methods, setting a new state-of-the-art benchmark in MI pre-
diction. Moreover, correlation analysis with key biomarkers related to cardiac
functions showcases the model’s ability to capture clinically relevant shape de-
formation across cardiac phases. Visualization of attention maps and latent space
further supports that our multi-task design refines the transformer architecture’s
understanding of the clinical importance of different cardiac structures. As a re-
sult, the model learns to selectively attend to the most relevant regions for MI
prediction, leading to more transparent and rational decision-making.
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2 Materials and Methods

2.1 Dataset

We conduct our experiments on a dataset of 470 subjects collected from the
UK Biobank study [19]. Half of the subjects developed MI after the imaging
date (i.e., incident MI), while the other half were considered as healthy, with no
prior history of diseases listed in [4]. For each subject, biventricular anatomies
are captured at end-diastolic (ED) and end-systolic (ES) cardiac phases. These
anatomies are represented as 3D point cloud surface data, reconstructed from
cine CMR images following the protocols outlined in [2,6]. We perform pre-
processing by translating the point sets to a zero-mean coordinate system, and
standardizing the scale using the standard deviation of the dataset. The dataset
is split into 70%/5%/25% for training, validation, and testing.

2.2 Framework

As depicted in Fig. 1, we propose a dual-branch framework to extract clini-
cally meaningful and discriminative features by leveraging localized information
from cardiac substructures. It comprises modules for partitioning the input point
cloud anatomies into patches and embedding them into higher-dimensional la-
tent space, followed by a series of transformer blocks as the encoder to generate
intermediate features. The substructure prediction module is devised for feature
refinement by enhancing the awareness of spatial importance. Finally, the model
training is guided by supervision at multiple levels of granularity. Details are
given below.

Similar to [18,28], we employ farthest point sampling (FPS) to split the
point sets into patches. Concretely, given input anatomies X € RV*3 with N
three-dimensional points, FPS selects a subset of g centroid points that are
maximally spaced to ensure uniform coverage of the geometry. The K-nearest
neighbors (KNN) algorithm is then applied to compute the distances from the
centers and select the k closest points based on minimum distance. This results
in a structured representation of the anatomies as patches P € RI*¥%3  We
empirically find that the model reaches better convergence when g x k = 2N.

The generated patches are projected into initial embeddings via a simpli-
fied PointNet [20] where each patch undergoes 1D convolution and max-pooling
operations. Next, we apply positional encoding to embeddings. Formally, this re-
sults in the input sequence z = {z1, 22, 23, ..., 24 } with a classification token [cls]
for encoding, which is initialized as a zero vector. As the information contained
in individual patches is limited, we adopt vision transformer (ViT) [11] as the
encoder to compute mutual dependencies across embeddings with multi-head
self-attention. Mathematically, we compute the query @, key K, and value V by
performing a linear transformation to z with learnable weights. The attention is
expressed as:

T
attention = softmax QK V, (1)
Vi
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Fig. 1. Our proposed dual-branch framework for improved MI prediction. A patchify-
ing module partitions the input ED and ES anatomies into point patches using FPS
and KNN. Patches are then projected into initial embeddings, which are fed into the
transformer encoder, together with an empty classification token. The substructure pre-
diction module assigns each patch embedding to its corresponding cardiac substructure
category, which encourages the model to focus on more localized spatial relationships,
thereby refining the learned representations.

where dj represents the dimension of K column-wise.

In this work we focus on three key cardiac substructures, due to their im-
portance in MI prediction: left ventricle (LV) endocardium, LV epicardium, and
right ventricle (RV) endocardium. In order to differentiate between these three
substructures in the embedding space and thus enable more localized anatomical
information to supervise the model training, we introduce a cardiac substruc-
ture prediction module. Normally, the model predicts the substructure cate-
gory for each individual point. However, this can introduce redundancy, as point
cloud representations are dense, and points within the same patch typically share
the same category. Instead, we formulate the point-wise segmentation task as a
patch-wise classification. Specifically, we attach a shared-weight multilayer per-
ceptron (MLP) prediction head to each embedding in the sequence z and output
the predicted substructure categories, which are compared with the ground-
truths s = {s1, 82, 83, ..., Sg}. We define the substructure prediction loss Lsuppred
using cross-entropy as

C
Esubpred = - Z S; IOg(MLP(Z))ia (2)

i=1

where C' = 3 to represent the three substructures. The refined embeddings con-
tain rich and fine-grained spatial information. The classification token [cls] ag-
gregates global information by attending to all other tokens in the sequence and
accumulating contexts via self-attention. For MI prediction, we define the loss
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Lyred which also adopts the cross-entropy loss, ensuring simplicity in weight
balancing.
We define our multi-task training objective as a linear combination of two
loss terms, given as:
Etotal = Epred + Esubp'red * @, (3>

where « is the coefficient to weight task importance.

2.3 Implementation Details and Metrics

In our experiments, the hyperparameters corresponding to the properties of the
anatomies are N = 36000, g = 480, and k£ = 150. The patch embedding dimen-
sion is set to 384, and the weighting term « in Eq. (3) is set to 1. Our model
employs 12 ViT blocks, with 6 attention heads and a dropout rate of 0.1. We
optimize our model using the AdamW optimizer with an initial learning rate of
0.0001 for 70 epochs. During training, the learning rate is decreased based on the
cosine annealing strategy. Our model is implemented by Pytorch and is trained
on NVIDIA 2080Ti GPU with 11 GB of memory.

To quantify the MI prediction performance, we utilize the area under the
receiver operating characteristic curve (AUROC), accuracy, and F1 score. They
comprehensively assess the model’s ability to distinguish between positive and
negative classes under different threshold values.

3 Results and Discussion

3.1 Myocardial Infarction Prediction

To evaluate the effectiveness of the proposed multi-task learning model in MI pre-
diction, we conduct a comparative study against several state-of-the-art learning-
based approaches. These include: 1) standard CNN with 2D segmentation con-
tours; 2) 3D Contraction [10], which leverages principle component analysis
(PCA) to extract features from LV meshes for MI prediction; 3) Point Cloud
Classification Network (PCCN) [7]; 4) Point Cloud Deformation Network (PCD-
Net) [5], which explicitly models cardiac deformation within latent space; and 5)
Multi-objective Point Cloud Autoencoder (MOPCA) [4]: a multi-task network
for anatomy reconstruction and MI prediction.

Table 1 summarizes the quantitative results of MI prediction. It is observed
that our proposed model substantially outperforms all other methods across all
metrics. Notably, compared to MOPCA which also improves MI prediction via
multi-task learning, our model achieves an approximately 5% performance gain,
highlighting its superiority in learning cardiac representations.

3.2 Ablation Study

To assess the impact of multi-task learning in the proposed model, we perform
an ablation study by varying the weighting coefficient «;, i.e., the contribution of
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Table 1. Comparison of MI prediction results. All results are reported as the mean
values, with the highest highlighted in bold. The higher the value the better.

Methods Input Modality AUROC |Accuracy |F1 score
CNN LV + RV |2D contours [0.641 0.608 0.617
3D Contraction [10] [LV mesh 0.647 0.614 0.605
PCCN [7] LV + RV |point 0.646 0.652 0.637
PCD-Net [5] LV + RV |point 0.721 0.668 0.663
MOPCA [4] LV + RV |point 0.767 0.694 0.695
Ours LV + RV |point 0.802 0.735 0.730
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Fig. 2. MI prediction performance under different weighting coefficient o in multi-task
learning.

the substructure prediction task, in the total loss function. The numerical results
are illustrated in Fig. 2, reported according to the aforementioned metrics.

Generally, we find that prediction performance gradually improves as « in-
creases, with the optimal trade-off reached at @ = 1. While we observe minor
changes in the F1 score (0.734 at @« = 0 vs. 0.730 at a = 1), both AUROC
and accuracy show considerable growth, peaking at 0.802 and 0.735, respec-
tively. However, further increasing o to values such as 1.2 and 1.5 results in
performance drop. Given that both tasks utilize the same training objective and
therefore have similar loss magnitudes, we hypothesize that the overemphasis
on the substructure prediction task might bias the optimization process, hence
degrading the MI prediction. Conversely, this finding indicates that our multi-
task learning formulation is straightforward yet effective. It is also noteworthy
that even without the substructure prediction task (« = 0), the model can still
perform slightly better than MOPCA. We credit this advantage to the design
of the framework backbone. More importantly, the results support the efficacy
of introducing auxiliary supervision in refining model training through more
fine-grained annotations, which leads to enhanced MI prediction.

3.3 Clinical Relevance

In this section, we analyze the explainability of our proposed method by inves-
tigating the association between latent space and clinical patterns, both quan-
titatively and qualitatively. To quantify its relationship with cardiac function,
we choose four widely used biomarkers: average myocardial thickness change
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Fig. 3. Box plots of quantitative Spearman’s rank correlation of each embedding dimen-
sion to 4 cardiac biomarkers: myocardial thickness change, mass change, LV ejection
fraction (LVEF), and LV mass/end-diastolic volume ratio (LVM/EDV). Dots mark
the correlation magnitude of the top 20 most influential embedding dimensions for
predictions.

between ED and ES, myocardial mass change between ED and ES, LV ejec-
tion fraction (LVEF), and left ventricular mass to end-diastolic volume ratio
(LVM/EDV). We compute Spearman’s rank correlation coefficients p between
each dimension of the generated embeddings (i.e., the classification token [cls])
and selected biomarkers, on the test data. All reported correlations are signif-
icant with p < 0.01. Figure 3 summarizes the comparison of the results with
(v = 1) and without the substructure prediction task (o = 0) in box plots. Ad-
ditionally, we mark with dots the correlation magnitude of the top 20 embedding
dimensions that contribute most to the model’s predictions using SHAP [15]. In
both cases, many of the top-ranked dimensions are found near the two extreme
ends of the interquartile range (IQR), indicating that the model tends to utilize
features with high clinical correlation primarily. A key distinction arises when
the multi-task loss is used (o = 1): in this case, the model produces embeddings
with a broader correlation range, as evidenced by wider IQR and more dispersed
distribution of top-ranked dimensions. In contrast, with the multi-task loss dis-
abled (a = 0), the dots become more concentrated and overlap closer to zero.
This suggests that integrating the substructure prediction task allows the model
to encode embeddings that are more clinically informative and diverse, while also
improving its capacity to capture cardiac deformation (e.g., stronger LVEF cor-
relation). Therefore, these refined embeddings enhance both model performance
and interpretability of the decision-making process.

To further examine the effect of the substructure prediction task on the la-
tent space of individual subjects, we visually compare the latent embeddings of
each point patch alongside their corresponding attention maps. Specifically, the
latent embeddings z are first obtained by passing point patches P through the
transformer blocks. We then adopt UMAP [17] to reduce the dimension of each
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Fig. 4. UMAP visualization of latent embeddings z (a,c), with each point corresponding
to one patch of the anatomy. Different colors indicate different substructure categories.
The average attention maps are also visualized in three views alongside (b,d). The
brighter the area, the greater the model’s attention.

embedding to 3 for visualization in Fig. 4 (a,c). Additionally, the attention maps
are generated by averaging the attention matrices over all transformer layers and
attention heads (Fig. 4 (b,d)). Brighter areas indicate higher model attention.
Figure 4 presents a representative example from a single subject for brevity;
similar patterns are observed across all subjects in the dataset. Comparing the
embedding space in (¢) with (a), we observe that when o = 1, embeddings of
various substructures are well-clustered. Notably, the LV epicardium and endo-
caridum clusters are distinctly separated whereas in (a), they remain intertwined.
Meanwhile, the LV endocardium is encapsulated within the epicardium, creating
a thin interstitial space, i.e., myocardium, which is spatially subtle yet clinically
critical for MI prediction. The enlarged degree of separation enables the model
to amplify such indicative anatomical details, demonstrating the utility of our
proposed model in capturing anatomical details from a finer level of granularity.
Furthermore, we find that (b) focuses solely on the global view, failing to capture
more detailed regions. In contrast, in (d), greater attention is directed to specific
regions within the LV, particularly the anterior wall to the apex. This pattern
appears to correspond to the clinical manifestation of MI, with the formation of
localized injuries in the LV and subsequent remodeling. We believe the proposed
module works as an optimization regularization term to direct attention to more
clinically salient regions, eventually refining the learned cardiac representations.

4 Conclusion

In this paper, we present a transformer-based approach that leverages a multi-
task learning strategy to jointly perform MI prediction and cardiac substructure
classification. Our model encodes the 3D anatomy in the latent space, expressing
a strong correlation to the functional and structural attributes of the heart, lead-
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ing the model to concentrate on clinically informative phenotypes. The results
highlight the effectiveness of introducing an auxiliary task with more detailed
supervision to improve MI prediction with high interpretability. The proposed
approach offers a promising direction for more robust and interpretable cardiac
disease prediction.
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