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Abstract. Implicit neural representations (INRs) have achieved remark-
able successes in learning expressive yet compact signal representations.
However, they are not naturally amenable to predictive tasks such as
segmentation, where they must learn semantic structures over a distri-
bution of signals. In this study, we introduce MetaSeg, a meta-learning
framework to train INRs for medical image segmentation. MetaSeg uses
an underlying INR that simultaneously predicts per pixel intensity values
and class labels. It then uses a meta-learning procedure to find optimal
initial parameters for this INR over a training dataset of images and
segmentation maps, such that the INR can simply be fine-tuned to fit
pixels of an unseen test image, and automatically decode its class labels.
We evaluated MetaSeg on 2D and 3D brain MRI segmentation tasks
and report Dice scores comparable to commonly used U-Net models, but
with 90% fewer parameters. MetaSeg offers a fresh, scalable alternative
to traditional resource-heavy architectures such as U-Nets and vision
transformers for medical image segmentation.
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1 Introduction

Implicit neural representations (INRs) have demonstrated impressive perfor-
mance in encoding complex natural signals. A typical INR fθ(·) is a multilayer
perceptron (MLP) with parameters θ that maps a coordinate x ∈ Rd to sig-
nal value I(x) ∈ RD and is iteratively fit to a specific signal. Because they offer
continuous signal representations, excellent reconstruction performance, and im-
plicit signal priors, INRs have gained significant attention in the computer vision
community for compactly modeling large signals[13, 17, 16], and in the medical
imaging community for inverse imaging tasks such as accelerated MRI [1], and
sparse-view CT reconstruction [18, 23]. Despite these successes, learned INR rep-
resentations are highly specific to a given signal and to the way its parameters
are initialized. As a result, unlike architectures such as U-Nets [15] and vision
transformers [9], INR-produced features lack structural or semantic coherence,
making them less used for tasks requiring learning over an image distribution.
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Fig. 1. Overview of MetaSeg. (a) We use a meta-learning framework to learn opti-
mal initial parameters θ∗, ϕ∗ for an INR consisting of an L-layer reconstruction network
fθ(·) and shallow segmentation head gϕ(·). (b) At test time, optimally initialized INR
fθ∗ is iteratively fit to the pixels of an unseen test scan. After convergence, the penul-
timate features fL−1

θ∗ (x) are fed as input to the segmentation head g∗ϕ(·) to predict
per-pixel class labels.

Results from recent studies suggest that this shortcoming of INRs may be
fixable. In particular, by fitting an INR across multiple images starting from
the same parameter intialization, the final parameters exhibit clear semantic,
structural properties for datasets such as faces or MRI scans [6, 21, 22]. And as
a result, these learned initializations allow the INR to fit unseen (test) images
rapidly with far fewer gradient updates while learning more generalizable fea-
tures [2, 21, 22]. In this study, we leverage this insight to develop an INR fitting
strategy for medical image segmentation. In particular, we present the surprising
discovery that an INR carefully optimized to fit many training pairs of images
and associated segmentation maps can predict a segmentation map for an unseen
test image when simply fine-tuned to reconstruct the image’s pixels.

We propose MetaSeg, a novel meta-learning [7] INR framework that performs
this strategy. MetaSeg uses an INR that simultaneously predicts both image pix-
els and segmentation labels given a coordinate (Fig. 1b), and aims to find an
optimal setting of the INR parameters (θ and ϕ), such that the network can
be quickly fine-tuned to fit any image-mask pair starting from these parameters.
MetaSeg uses a nested, meta-learning procedure (Fig. 1a). In the inner optimiza-
tion, the INR is fit to reconstruct a randomly selected batch of training image
and segmentation mask pairs. The outer (meta) optimization applies a gradient
descent step to the current values of θ and ϕ based on the converged inner param-
eters. These steps iterate to converge to an initialization that works well for both
image reconstruction and segmentation objectives from the given image distri-
bution. At test time, we simply fit the INR initialized with the learned optimal
parameters to the test image (without needing any segmentation information),
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generating viable segmentation masks in just 2 gradient descent updates and
near state-of-the-art quality masks after 100 updates.

MetaSeg draws inspiration from Neural Implicit Segmentation Functions
(NISFs) [20], which also use an INR to predict pixel and segmentation values.
However, instead of forcing the INR to learn image-label correlations, NISF takes
an additional latent vector as input to represent an image’s semantic content,
which must then be optimized at test time to produce a mask. Due to this
strategy, NISF must apply several regularization losses on INR parameters and
the latent space to succeed. In contrast, MetaSeg offers a much simpler training
methodology based on meta-learning, only requiring reconstruction and segmen-
tation losses during training and only a reconstruction loss during testing.

We evaluated MetaSeg on 2D and 3D magnetic resonance imaging (MRI)
segmentation tasks using the OASIS-MRI [8, 12] dataset. We first find that
MetaSeg achieves similar performance for 2D (Dice score: 0.93) and 3D (Dice
score: 0.91) MRI segmentation tasks to widely used U-Net baselines [4, 14] with
90% fewer parameters, and significantly outperforms NISF [20]. Second, we show
that MetaSeg performs well for fine-grained segmentation tasks, accurately seg-
menting image regions which may be sparse and span only a few pixels. Third, we
show that when trained on low-resolution scans, MetaSeg fares better on high-
resolution scans than U-Nets, likely due to its continuous representation. Finally,
we qualitatively demonstrate through principal component analysis (PCA) visu-
alizations that MetaSeg’s learned initial parameters encode semantic information
correlated with ground truth segmentations.

2 Methods

We assume a given dataset D = {Ij , Sj}Nj=1 of N subjects, where Ij and Sj are
a d-dimensional image scan and segmentation map, respectively (d = 2 and 3 in
our experiments). At location x ∈ Rd, we have Ij(x) ∈ RD and Sj(x) ∈ {0, 1}C ,
where D is the number of image channels, and C is the number of classes.

We propose the MetaSeg framework to estimate Ŝ for an unseen scan I
at test time. MetaSeg consists of an INR (Fig. 1b) with an L-layer MLP fθ :
Rd → RD that predicts Î(x) given coordinate x, and a segmentation head gϕ :
Rh → RC that predicts C class probabilities given the penultimate features, of
dimensionality h, computed by fθ: fL−1

θ (x). At test time, we aim to fit fθ(·) on I

for Tf steps, and then simply compute Ŝ(x) = gϕ(f
L−1
θ (x)) in one feed-forward

operation.
In Sec. 2.1, we describe MetaSeg’s strategy for learning optimal values θ∗, ϕ∗

over D, such that fθ∗(·) and gϕ∗(·) (networks initialized with θ∗ and ϕ∗) may
be easily fine-tuned to reconstruct and segment a scan from the distribution. In
Sec. 2.2, we describe how the INR initialized with these parameters may be used
at inference time to estimate a segmentation map for a scan.
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2.1 Training: Meta-Learning and Segmentation Head Optimization

MetaSeg uses a MAML[7] meta-learning strategy to learn optimal parameters
θ∗, ϕ∗, consisting of a nested optimization with inner and outer (meta) routines
(Fig. 1a). Starting with initial random values θ0 and ϕ0 at iteration t = 0,
the outer routine takes To gradient descent steps to move the parameters to
generalizable values. The gradient at each outer step is based on the results
of the inner routine, which fits fθt(·) and gϕt(·) for Ti steps on one data pair
(Ij , Sj). The outer routine uses the final inner parameter values as a gradient
signal to update θt, ϕt. To avoid a noisy gradient due to overfitting to example
j, we set Ti to a small value in practice (e.g., Ti = 2).

In the inner routine, at time step t, we optimize both fθt(·) and gϕt(·) for a
single subject j with a loss function:

Linner(Ij , Îj , Sj , Ŝj) =
∑

x

Lrecon(Ij(x), Îj(x)) + Lcls(Sj(x), Ŝj(x)), (1)

where Lrecon(a,b) =|| a− b ||22 is a per-pixel reconstruction loss, and

Lcls(a,b) =

C∑

c=1

−(1− b(c))γ · δc,a log(b(c)) (2)

is a per-pixel multiclass focal classification loss [11], where γ is a hyperparameter.
We use a focal loss to account for heavy class imbalance across pixels. In the
outer step, we make a gradient descent update:

[θt+1, ϕt+1]← [θt, ϕt]− β∇[θt,ϕt]

(
Linner(Ij , Îj , Sj , Ŝj)

)
, (3)

where gradient ∇[θt,ϕt](·) computes the difference between the converged param-
eters (θtj , ϕt

j) of the inner optimization and current parameters θt, ϕt. After To

outer gradient descent steps, we obtain parameters θTo and ϕTo .
We freeze θ∗ = θTo , but further optimize ϕTo such that when, at test time,

fθ∗(·) is fit for Tf iterations on any random scan, we can obtain accurate seg-
mentation predictions, in one step. To do so, we first fit fθ∗(·) separately on
each training scan Ij for Tf iterations and populate a dataset of learned scan-
specific features and segmentation maps, {fL−1

θ∗
j

(x), Sj(x)}Nj=1. We then globally
optimize gϕ(·) by minimizing the loss function Lseg:

Lseg(D) =
∑

x

∑

j

Lcls(Sj(x), gϕ(f
L−1
θ∗
j

(x))). (4)

We freeze the converged parameters as ϕ∗.

2.2 Inference: Fit Pixels, Get Labels

At inference time, we assume a given (unseen) scan I. We fit fθ∗(·) to I for
Tf iterations, solely optimizing the pixelwise reconstruction loss Lrecon. Upon
completion, we compute Ŝ(x) = gϕ∗(fL−1

θ∗ (x)), and apply softmax and argmax
operations to Ŝ(x) to obtain the predicted class per pixel.
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Fig. 2. Example progression of reconstruction and segmentation perfor-
mance as a MetaSeg INR fits the pixels of a test image. We report PSNR
(top) and Dice (bottom) scores. MetaSeg’s initialization leads to rapid convergence,
with a Dice score of 0.85 emerge as early as Tf = 2 iterations. It achieves optimal
segmentation (Dice=0.95, PSNR=41.3) at Tf = 100 iterations, and eventually declines
as it overfits to the image pixels at Tf = 5000 iterations.

3 Experiments and Results

We evaluated MetaSeg on the tasks of 2D and 3D MRI image segmentation. We
used 414 T1 brain MRI scans from the OASIS-MRI [8, 12] dataset, randomly
split into 214 training, 100 validation, and 100 test scans. OASIS-MRI provides 5
coarse (background, white matter, gray matter, cortex, and cerebrospinal fluid),
24 fine-grained segmentation labels for 2D slices, and 35 segmentation labels
for full 3D MRI volumes. We used aligned coronal sections provided in OASIS-
MRI for 2D segmentation and aligned 3D volumes for 3D segmentation. We
normalized all images and volumes to have intensity in

[
0, 1

]
. We padded and

resized images to resolution 192×192, and cropped 3D volumes to 160×160×200
followed by 2× downsampling to yield 80× 80× 100 resolution scans.

Implementation. For all experiments, we used a SIREN [19] INR with L =
[6, 5, 5] layers, width h = [128, 512, 256], and w0 = 30. We set the segmentation
head gϕ(·) as one fully connected layer with Leaky-ReLU activation, followed
by a linear layer with C output values. We used the Adam [10] optimizer with
a learning rate of 10−4 for inner and outer meta-learning optimizations. When
tuning the segmentation head for 5 classes, we reduced the learning rate to
5e− 5. We set Ti = 2 and Tf = 100, and ran the outer loop for To = 10 epochs
over the training data while validating the performance of optimized parameters
θt, ϕt every 50 steps. For 2D segmentation with 5 classes, we set the focal loss
hyperparameter γ = 1.0, and for 24 output classes we set γ = 2.0. For 3D MRI
volumes which exhibit high background class imbalance, we set γ = 3.0 and
further scaled the reconstruction loss by 0.1 for background pixels.
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Table 1. Quantitative performance of MetaSeg and baseline models on 2D
and 3D MRI segmentation tasks. MetaSeg achieves comparable Dice scores to
popular U-Net baselines with 90% fewer parameters.

Task Num. classes Model Dice Score ↑ Num. parameters ↓

2D MRI Segmentation
5 U-Net [4] 0.96± 0.008 7.7M

MetaSeg 0.93± 0.012 83K

24 U-Net [4] 0.84± 0.097 7.7M
MetaSeg 0.86 + 0.032 1.06M

3D MRI Segmentation 5
SegResNet [14] 0.95± 0.006 4.7M

NISF [20] 0.81± 0.007 293K
MetaSeg 0.91± 0.011 330K

GT GTMetaSeg. Dice 0.88MetaSeg. Dice 0.89

Fig. 3. Coarse and fine-grained 2D brain MRI segmentation results with 24
classes, for two subjects. MetaSeg accurately segments structures and is robust to
high variations across subjects for structures such as ventricles (depicted in purple),
brain stem (gray), and hippocampus (yellow). MetaSeg also adapts well to structures
such as the cerebral cortex (red) which are not compact and localized in space.

Baselines: We adopt a widely used U-Net [15] baseline for 2D MRIs [4] and
SegResNet [14] from the Monai [5] package for 3D MRIs. We trained all models
using a learning rate of 1e−3 until the validation loss saturated. We also compare
against NISF [20], the most closely related INR method in the literature.

3.1 Results

Table 1 presents average Dice[3] scores with standard deviations for MetaSeg
and baseline methods for both 2D and 3D cases. For 2D, MetaSeg achieves an
excellent Dice score of 0.93± 0.012 for 5 classes, comparable to that achieved by
the U-Net, but with 90% fewer parameters. Interestingly, as Fig. 2 illustrates,
MetaSeg fits a signal remarkably fast, yielding a viable segmentation in just 2
update steps to fθ(·) (Dice: 0.85), and reaching peak performance at Tf steps. If
fit further, MetaSeg’s segmentation accuracy eventually falls off as parameters
overfit to the particular scan. MetaSeg also performs well on the finer-grained
segmentation task with 24 classes, achieving a Dice score of 0.86 ± 0.032 and
outperforming the baseline U-Net. As shown in Fig. 3, MetaSeg provides con-
sistently accurate segmentation results for the ventricles and brain stem, which
have drastic variations in size and area across examples.
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Fig. 4. MetaSeg is capable of accurately segmenting 3D MRI volumes. (a)
Various cross sections of one learned volume. (b) Renderings of intermediate coronal,
axial, and sagittal planes, with high agreement (Dice≈ 0.93) with ground truth.

MetaSeg also performs well for 3D segmentation, achieving an average Dice
score of 0.91 ± 0.011 with 90% fewer parameters than SegResNet, and signif-
icantly outperforms NISF. Fig. 4 depicts rendered coronal, sagittal, and axial
planes from the segmented volume showing high agreement with ground truth
segmentation planes, also demonstrating that MetaSeg-encoded volumes can be
readily queried at any viewing plane. We also explored whether MetaSeg can gen-
erate high resolution (2×) 3D segmentation maps when only trained on low reso-
lution scans, due to its underlying continuous representation. MetaSeg achieved
a Dice score of 0.78 ± 0.011 on this task, while SegResNet [14] achieved a Dice
score of 0.73± 0.019. Hence, while there is a significant drop in performance in
this scenario, MetaSeg still outperforms U-Nets.

Finally, we conducted an ablation study on parameter initialization strat-
egy for 2D segmentation, with results reported in Table 2. MetaSeg performs
significantly better than INRs initialized with random, fixed, and image-only
meta-learning strategies. The latter result, in particular, demonstrates the ben-
efit of learning structural priors with joint segmentation supervision.

Table 2. Ablation studies on INR initialization strategies for 2D segmenta-
tion. MetaSeg’s approach of jointly learning initial INR and segmentation parameters
outperforms random, fixed, and image-only meta-learning initialization strategies.

Init. Strategy Random Fixed Meta-learn, Image Only MetaSeg
Dice scores 0.30± 0.057 0.53± 0.1 0.81± 0.033 0.93± 0.012

4 Discussion and Conclusion

Results demonstrate that MetaSeg achieves strong performance on both 2D and
3D MRI segmentation tasks, with comparable Dice scores to common U-Net
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Fig. 5. PCA visualization of penultimate features learned by MetaSeg and a
standard INR for a 2D test scan. We performed PCA separately on the features re-
turned by each INR across spatial coordinates. We see a strong correlation for MetaSeg
features with anatomical structures. For example, component #2 approximately resem-
bles inner brain regions, #3 resembles regions like hippocampus and basal ganglia, #4
resembles ventricles, and #5 captures the cerebral cortex. On the contrary, a standard
INR yields seemingly random features.

baselines [4, 14] but with 90% fewer parameters. In addition, MetaSeg signifi-
cantly outperforms NISF [20], a related INR approach for segmentation. Abla-
tion results demonstrate that our meta-learning strategy to initialize parameters
with joint reconstruction and segmentation supervision is crucial for success.

MetaSeg offer a new perspective on the capabilities of INRs for imaging tasks,
particularly beyond signal representation, which has been their predominant
application in the literature. In particular, the results demonstrate that the meta-
learning strategy can be useful for image translation tasks such as segmentation,
where there is strong cross-correlation across signals. Indeed, as demonstrated
by PCA decomposition in Fig. 5, MetaSeg learns low-dimensional embeddings
that seem to jointly model both pixel intensity and semantic structure.

Because an INR explicitly conditions its features on input coordinates, it is
likely that an INR will learn highly signal-specific features localized in space.
While this is a good property for signal representation, it may lead to poor per-
formance on tasks requiring generalization, such as segmentation. We conducted
a pilot test to measure the sensitivity of MetaSeg to the spatial alignment of
test scans to the training set distribution by applying random orientation and
translation augmentations. We found that Dice score drops by 2%-6% for test
images rotated randomly in [5◦, 15◦], and drops by 3%-9% for test images with a
random translation in [5−10] pixels. Hence, MetaSeg can be somewhat sensitive
to spatial alignment, though further experimentation is needed to understand
whether this can be mitigated itself with proper training augmentation.

MetaSeg learns fast, is resource-friendly, and scales well with more dimen-
sions, unlike typical vision and transformer models. It also is easy to train, using
only standard reconstruction and classification losses. In an age where AI re-
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quires increasing resource and financial investments, MetaSeg provides a fresh
new perspective to solving image segmentation tasks.
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