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Abstract. Automatic ultrasound nerve localization algorithm is crucial
in nerve block procedures and neuropathy detection. However, the perfor-
mance of existing approaches is typically constrained by the limited scale
of ultrasound image datasets. While adapting from large scale models
such as Segment Anything Model (SAM) has demonstrated remarkable
performance on medical images, its effectiveness heavily relies on ex-
tensive datasets and substantial computational resources. This presents
significant challenges for adapting SAM to ultrasound image segmenta-
tion. To address these challenges, we propose a novel parameter- and
data-efficient adaptation method called Hierarchical Adapter. Specifi-
cally, the Hierarchical Adapter can flexibly adjust the number of fine-
tuning parameters to optimize the exploitation of data and computa-
tional resources. In addition, we observe the depth-dependent difficulty
for adapting different Transformer blocks of SAM. Therefore, we insert
Hierarchical Adapters with varying sizes into transformer layers at differ-
ent depths of the SAM encoder, optimizing the distribution of trainable
parameters. This design significantly improves the parameter-efficiency
during adaptation while simultaneously enhancing segmentation perfor-
mance. Compared to state-of-the-art methods, our model reduces train-
ing parameter requirements by more than half while still achieving an
approximately 1.5% improvement in Dice score on two ultrasound nerve
datasets.

Keywords: Large Scale Model - Segment Anything Model - Ultrasound
Nerve Image Segment.

1 Introduction

Ultrasound is widely used in medical imaging for diagnosis and surgical proce-
dures due to its non-invasive nature, real-time imaging capability, and low cost.
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Identifying and segmenting nerve structures is important for safe anesthesia and
surgery [22]. It is also crucial in creating personal treatment plans for neurologi-
cal rehabilitation [2]. However, the limited dataset scale poses a crucial challenge
in training an automatic segmentation algorithm for accurate ultrasound nerve
segmentation [27].

Recent studies have demonstrated that adapting large-scale pre-trained mod-
els can significantly improve the performance on downstream tasks [7]. With the
advancement of large-scale models, the Segment Anything Model (SAM) has
garnered significant attention in image segmentation. However, SAM’s training
set (SA-1B) contains a very few ultrasound images, resulting in suboptimal per-
formance for ultrasound segmentation [23]. Despite SAM’s strong generalization
ability, adapting its millions of parameters [19,21,30] is computationally expen-
sive and typically requires large-scale datasets, which is particularly challenging
given the limited availability of nerve ultrasound data.

To overcome these challenges, we propose a highly data-efficient and compu-
tationally efficient method to effectively adapt SAM for nerve ultrasound image
segmentation. Particularly, we propose a novel Hierarchical Adapter method and
Hierarchical Adapter SAM (HA-SAM) to improve the efficiency of adapter pa-
rameters in Parameter-Efficient Fine-Tuning (PEFT). Our analysis reveals that
different Transformer layers in SAM’s image encoder require varying degrees of
adaptation, with deeper layers benefiting from more parameters. To optimize
adaptation, we assign smaller adapters to shallow layers and larger adapters to
deeper layers, enhancing SAM’s segmentation performance on ultrasound images
without requiring additional training data or computational resources. Experi-
mental results confirm the superior efficiency and effectiveness of our method for
ultrasound image segmentation. We also collect and label the NBSBP dataset,
which is helped by doctors at TongJi Hospital and is the first supraclavicular
brachial plexus dataset for nerve block segmentation, called Neural Blockade
Supraclavicular Brachial Plexus (NBSBP).

In summary, our key contributions are as follows: We introduced HA-SAM,
a resource-efficient method specifically designed for small ultrasound neural
datasets, significantly reducing computational and data-scale demands while im-
proving segmentation performance.

We validated the effectiveness of HA-SAM through extensive experiments on
ultrasound segmentation datasets, demonstrating its clear advantages over both
task-specific and SAM-based methods.

2 Related Work

SAM in Medical Image Segmentation. Meta Al developed the SAM, which
is considered a milestone in visual foundational models [15]. But, even though
SAM works well on natural images, it does not work well for medical image
segmentation [23]. Many studies have attempted to transfer SAM to the field
of medical imaging. For example, Med-SA [30] adds medical image details using
Space-Depth Transpose and the Hyper-Prompting Adapter. SAMed [31] uses the
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LoRA method to help SAM perform semantic segmentation on medical images.
MedSAM |[21] collects a large set of medical images and fine-tunes parts of the
model on this data. These methods do not work well for ultrasound as they
do not target ultrasound images. SFRecSAM [32]| adds frequency features for
breast ultrasound images, and SAMUS [19] adds local features for ultrasound
images. However, they need many training resources. Our HA-SAM method in
this paper reduces the training resources needed.

Parameter Efficient Fine-Tuning. PEFT fine-tunes only a few parameters
in large models and keeps most of them fixed. This method reduces the need for
computation and storage. [9]. Adaptation methods [10,29] add adapter modules
into the transformer layers and fine-tune just the modules. AdaptFormer [5] uses
this idea in Vision Transformer. LoRA [12] decomposes certain weight matrices
in a pre-trained model into two smaller matrices, updating only these during
training. Prefix tuning [18] and prompt tuning [17] add trainable tokens to the
input or to the middle of the sequence. Visual Prompt Tuning [14] uses prompt
tuning for image classification.

3 Method

3.1 The Overall Architecture of HA-SAM

Our method is inspired by migrating large models to downstream tasks. Lay-
ered fine-tuning, a technique that adjusts the unfreezing strategy on a layer-
by-layer basis, enables flexible adaptation to tasks that differ significantly from
pre-training data, aligning with our goal of adapting SAM to ultrasound nerve
images [25]. Instead of applying uniform fine-tuning, this approach updates each
layer to varying degrees based on model hierarchy. Typically, high-level layers
near the output are unfrozen for task-specific adaptation, while low-level layers
remain frozen to retain general features [11,28]. Layered fine-tuning has proven
effective in vision tasks, particularly under distribution shifts [6,16,20]. Building
on this, we propose the Hierarchical Adapter, which introduces adapter blocks of
different sizes in both high- and low-level layers, enabling fine-tuning at varying
depths.

As depicted in Fig. 1 , HA-SAM retains SAM’s overall architecture, including
the prompt encoder and mask decoder, both of which remain frozen during
training. The ultrasound neural image and a point prompt are input into the
image encoder to extract features, which are then combined with prompt features
and fed into the mask decoder to generate a segmentation result.

The image encoder is enhanced by integrating the Hierarchical Adapter into
its Transformer blocks, improving upon the adaptation method. Small adapters
are added to shallow blocks, while larger adapters are used in deep blocks to
efficiently adapt high-level features while making minimal changes to low-level
features. This approach leverages SAM’s generalization ability, introduces fewer
parameters, optimizes training on a small ultrasound dataset, and reduces re-
source consumption.
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Fig. 1. Overview of HA-SAM.

3.2 Hierarchical Adapter

The structure of Hierarchical Adapter is the bottleneck structure shown in Fig.
1. The purpose of this is to limit the number of parameters introduced. First, a
down-projection Wygwn € R¥7 is used to project the input d-dimensional orig-
inal features into a low-dimensional space specified by the bottleneck coefficient
r, followed by a nonlinear activation function f(-), and finally an up-projection
Wup € R"*4 to restore the output to the original d-dimensional original fea-
tures. By setting r < d, we can limit the amount of added parameters and
balance parameter efficiency with performance. At the same time, we set resid-
ual connections within each hierarchical adapter to ensure the stability of feature
extraction. We integrate hierarchical adapters into the transformer layers. The
first adapter is positioned after the multi-head attention in the attention layer,
connected in series with the multi-head self-attention module, and precedes the
residual connection; the second is placed within the residual connection of the
feed forward layer, running in parallel with the feed forward module.

To more efficiently utilize the parameters added to the image encoder, we
drew inspiration from the concept of layered fine-tuning. For Transformer lay-
ers at different depths, we adjust the parameter size of the inserted hierarchical
adapters by tuning the bottleneck coefficient r. Specifically, as illustrated in
Fig. 2, we reduced the size of the adapter used to fine-tune the shallow trans-
former blocks, while increasing the size of the adapter used to fine-tune the
deep transformer blocks. Our current hierarchical strategy follows an arithmetic
progression, where the size of the Hierarchical Adapter increases arithmetically
with the depth of the transformer layer. Let ¢ represent the number of layers in
the Hierarchical Adapter. For the shallow Hierarchical Adapter (1 < ¢ < 6), its
bottleneck coefficient r; can be expressed as:

ri:dxrx(é). (1)
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Fig. 2. Hierarchical Adapter. The size of HA represents the learnable parameter
capacity.

For the deep Hierarchical Adapter (7 < i < 12), the bottleneck coefficient r;
can be expressed as:
1—1
ri=dxrx(

); (2)

where d is the dimension of the network itself, and r is the standard bottle-
neck coeflicient(with » = rg = r7). In this approach, while keeping the total
number of trainable parameters constant, we allocate more parameters to adjust
high-level features and reduce parameter allocation for low-level features. This
strategy introduces ultrasound image-specific information into SAM, enhancing
its segmentation performance on ultrasound images while preserving its strong
generalization capabilities. Thus, if hé) represents the embedding from the first
Transformer block, the final output embedding h;2 can be expressed as:

h12 = h/ll + f(hllo + f( e (h/o + f(hz)Wdlown)Wip)

(3)
T Wdlc;un)Wz};l))W(ilgwn)W;Z)ﬂ

where h; represents the input to the i-th layer, h; represents the output after
passing through the i-th layer Transformer Block, which can be represented as:

hi = by + F(h_ Wi )WE (4)

The above formula (3) expands h; using formula (4) in the activation function.
W(jown represents the down-projection of the i-th layer Hierarchical Adapter,
Wip represents the up-projection of the i-th layer Hierarchical Adapter, while
f(+) denotes the nonlinear activation function, for which we use ReLU.

3.3 Prompt Encoder

In our study, we use point prompts to simulate how doctors interact with areas
during segmentation. To avoid directly using the ground truth for click prompts,
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we develop a simple target localization network to predict point coordinates. We
employ a lightweight ResNet-18, by modifying its fully connected layer to identify
the target area and output point coordinates. During training, we set the ground
truth center as the target and optimized the network using Mean Squared Error
(MSE) Loss. During testing, a prediction is considered correct if it falls within
the foreground of the ground truth. Our results show that the network achieves
an accuracy of 99.97%, meeting doctors’ requirements for click-based prompts
in surgical settings.

4 Experiments

4.1 Datasets and Implementation Details

In our experiments, we evaluate segmentation performance on two ultrasound
nerve datasets and an additional breast cancer ultrasound dataset. The first is
the neural blockade supraclavicular brachial plexus dataset consisting of 1,500
images from 50 patients, specifically designed for nerve block segmentation (NB-
SBP). The second is the Kaggle BP Dataset [24], a publicly available dataset
containing 2,500 images for brachial plexus segmentation. Additionally, we tested
our method on the BUSI dataset [1], which includes nearly 650 ultrasound images
of breast cancer from women aged 25 to 75 years. This diverse dataset selection
ensures a comprehensive evaluation of our method across various ultrasound
segmentation tasks.

We split each dataset randomly into training, validation, and test sets with
a 7 : 1.5 : 1.5 ratio. We compare our method with the following ten SOTA
methods: SAM [15], Med-SA [30], SAMed [31], MedSAM [21], SAMUS [19],
Unet [26], SwinUnet [3], TransUnet [4], H2Former [8], and MissFormer [13].

We train the model on a single NVIDIA 2080TI GPU, using the ViT-B
version of SAM. During training, only the hierarchical adapter’s parameters
can be learned. To match SAM’s image size limit, we adjust the resolution of
ultrasound images to 1024 x 1024. We select the Adam optimizer for training
and set the initial learning rate to 0.0005, batch size to 1, and epoch to 400.
The evaluation indicators are dice, IoU and HD95, all of which are averaged.
Additionally, we perform a two-sample t-test to calculate the p-value, assessing
the statistical significance of the observed differences in model performance.

4.2 Compare HA-SAM with SOTA Models

Table 1 summarizes the performance of our method and other SOTA models
on three datasets. HA-SAM outperforms existing methods, with particularly
strong results on NBSBP. Compared to vanilla SAM, it improves the Dice score
by 30%, surpasses task-specific methods by about 5%, and outperforms other
SAM-based SOTA models by an average of 1%. We also report the number of
trainable parameters in Table 1. HA-SAM has the fewest among all compared
methods, with only 6.82M. This superior performance highlights the effective-
ness of the Hierarchical Adapter, which efficiently integrates ultrasound-specific
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Fig. 3. Qualitative results of HA-SAM and SOTA models. For clarity in com-
parisons, the ground truth is highlighted in pink.

information while using a layer-wise adapter structure to maximize parameter
efficiency. As a result, HA-SAM reduces computational cost while improving seg-
mentation performance on data-limited ultrasound nerve datasets. Additionally,
its parameter-efficient design makes it highly practical in low-resource environ-
ments. To assess generalization, we tested HA-SAM on the BUSI dataset, con-
firming its effectiveness beyond nerve segmentation. Fig. 3 presents qualitative
results, showing improved segmentation quality.

Table 1. Comparison of Different Models. An asterisk (*) after the data
indicates a statistically significant difference at the 5% significance level (p<
0.05).

Model

Train NBSBP KaggleBP BUSI
Para.| Dice IoU HD95 | Dice IoU HD95| Dice IoU HD95
Unet 23.53 |70.20*|55.16*| 16.15* [69.63*|58.92*|23.43*|71.24*|56.36*| 12.01*
SwinUnet | 27.17 [69.58%|54.52%| 17.18* |76.40%|64.76*|20.65*|73.88*|58.49*| 15.94*
TransUnet [105.28|76.45%(62.72%| 14.22 |77.36%|65.54*|17.98%|75.62*|65.73*| 4.86
H2Former | 33.87 |79.05%|66.34*| 16.67* |76.89%|65.28%|27.54%|74.79%64.97*| 4.90
MissFormer| 42.46 |78.45%|65.67*| 12.98 |76.46*|64.98*|22.79*|75.23*%|65.10*%| 6.75
SAM 0.00 |52.20*|43.06*|150.46*|46.76*|38.53*|61.18*|40.79*|33.73*|294.95*
SAMed | 18.81 |81.36*|68.13*| 26.92* |78.80*|67.32*|41.43%|76.74*|62.76*| 14.44*
Med-SA | 13.00 |81.84*|68.59*| 16.34 |78.12*%|66.39%|15.37*|77.02*|65.37*| 7.88
SAMUS [130.10(82.53*|70.02*| 18.27* |78.31*|66.47*|12.75| 77.81 | 66.18 | 11.71*
MedSAM | 93.73 |80.73*|67.72*| 17.56* |75.79*|64.18*(14.63*|75.96*|61.80*| 19.87*
HA-SAM | 6.82 [83.04|70.43| 15.08 |79.44|66.73| 13.06 |78.56(65.67| 9.62

4.3 Changes in Feature Distribution Across Different Layers

As shown in Fig. 4, we compare the output feature value distributions from shal-
low and deep Transformer blocks, both with and without the hierarchical strat-
egy. The results show that the hierarchical strategy has little effect on shallow
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features, but it significantly alters the feature distribution in deep Transformer
blocks. These results highlight the difference in migration difficulty between low-
level and high-level features. Our strategy improves the efficiency of high-level
feature migration while having minimal impact on low-level features. Addition-
ally, this improvement is achieved without adding extra training parameters,
demonstrating the effectiveness of the hierarchical design in the adapter.

4.4 Ablation Study

Table 2 summarizes the ablation experiments, primarily evaluated using the
Dice metric. We test several configurations, including reversing the hierarchical
adapter size (using larger adapters in shallow layers and smaller ones in deeper
layers), removing the first and last hierarchical adapters, and applying different
hierarchical strategies, which change the design of bottleneck coefficient r;. Strat-
egy 1 follows r; = 2% , and Strategy 2 follows r; = ¢'5 . The results show that
Transformer blocks at different depths have varying migration challenges and
our hierarchical adapter method improves performance by prioritizing high-level
feature migration. The different hierarchical strategies have a minimal impact on
performance, as they introduce only slight changes in the number of parameters.

(a).Shallow 000 (b).Deep
Before Before
300000 Afer Aftr Table 2. Ablation Study.
250000 300000
g 200000 200000 MethOd che
£ 130000 Reversing HA sizes | 82.55
100000 100000 Removing the first layer| 80.75
30000 Removing the last layer| 80.25
R 0.0 05 ! 2 0 2 Strategy 1 82.74
Feature Values Feature Values Strategy 2 82 89
Fig. 4. His f ei 1 f f- )
g istograms of eigenvalues before and a HA-SAM 83.04

ter stratification in shallow and deep layers.

5 Conclusion

This study introduces HA-SAM, an adaptation of SAM for ultrasound nerve
segmentation. By adjusting adapter parameters at different depths, HA-SAM
enhances segmentation performance without increasing the number of train-
able parameters. We evaluate its effectiveness on both private and public ul-
trasound nerve datasets and further test its generalization ability on a public
ultrasound breast cancer dataset. Experimental results demonstrate that HA-
SAM effectively adapts SAM to small datasets, achieving superior performance
in resource-constrained environments with limited data.
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