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Abstract. Image-to-text radiology report generation aims to produce
comprehensive diagnostic reports by leveraging both X-ray images and
historical textual data. Existing retrieval-based methods focus on max-
imizing similarity scores, leading to redundant content and limited di-
versity in generated reports. Additionally, they lack sensitivity to medi-
cal domain-specific information, failing to emphasize critical anatomical
structures and disease characteristics essential for accurate diagnosis. To
address these limitations, we propose a novel retrieval-augmented frame-
work that integrates exemplar radiology reports with X-ray images to
enhance report generation. First, we introduce a diversity-controlled re-
trieval strategy to improve information diversity and reduce redundancy,
ensuring broader clinical knowledge coverage. Second, we develop a com-
prehensive medical lexicon covering chest anatomy, diseases, radiological
descriptors, treatments, and related concepts. This lexicon is integrated
into a weighted cross-entropy loss function to improve the model’s sen-
sitivity to critical medical terms. Third, we introduce a sentence-level
semantic loss to enhance clinical semantic accuracy. Evaluated on the
MIMIC-CXR dataset, our method achieves superior performance on clin-
ical consistency metrics and competitive results on linguistic quality met-
rics, demonstrating its effectiveness in enhancing report accuracy and
clinical relevance. The code is publicly available at github.com/DrLS.
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1 Introduction

Radiology reports play a critical role in conveying accurate medical informa-
tion and facilitating communication between healthcare providers and patients.
However, the process is highly specialized, time-consuming, and prone to in-
consistencies due to variations in radiologists’ expertise. Automatic Medical Re-
port Generation (AMRG) aims to automate the creation of structured reports
from medical images, reducing the radiologist’s workload while ensuring consis-
tency and comprehensive diagnostic descriptions. The rapid development of deep
learning, has greatly advanced AMRG. Early systems relied on template-based
approaches [20,10], which lacked flexibility and scalability. Accurate lesion de-
scription in AMRG (including severity, localization and size) is challenging due
to visual deviations, driving research in lesion classification [16], detection [13],
and segmentation [17]. The shift to deep learning models, combining CNNs for
image feature extraction and RNNs for text generation [22,4,18], enabled end-
to-end report generation.

As AMRG models evolve [19], memory-driven architectures have significantly
improved the coherence and accuracy of generated reports. Approaches such
as the memory-driven transformer [3] and cross-modal memory networks [2]
have advanced the alignment of visual and textual data, strengthening the se-
mantic connection between medical images and radiology reports. To address
the complexity of medical language, knowledge-driven methods have also been
introduced. These techniques incorporate general and case-specific knowledge,
leading to more clinically relevant reports [24]. The use of learned knowledge
bases and multi-modal alignment has further refined report generation, ensuring
that the generated reports maintain clinical significance [23]. Recently, incor-
porating structural entity extraction and patient-specific indications into report
generation ensures that the content aligns more closely with clinical findings [12].
Meanwhile, retrieval-based deep learning methods [5,11,24,23,12] have gained in-
creasing attention due to their ability to leverage historical reports for guidance.
However, these models primarily focus on maximizing retrieval similarity, often
leading to repetitive content and limited diversity in retrieved reports. This is-
sue is particularly problematic when dealing with subtle variations in imaging
findings or rare disease cases. Moreover, most AMRG models rely on standard
cross-entropy loss [23,14,12], which treats all words equally, neglecting the impor-
tance of domain-specific terms critical for clinical decision-making. Addressing
these challenges requires a more adaptive retrieval mechanism and loss optimiza-
tion that prioritizes medically significant terms, ensuring more diverse, precise,
and clinically meaningful report generation.

In this paper, we propose a novel method, DrLS, which integrates Diversity-
controlled retrieval strategy, domain-specific Lexicon and sentence-level Semantic
loss to enhance radiology report generation. Our contributions are as follows. (1)
We propose a diversity-controlled retrieval strategy that reduces redundancy and
enhances information coverage by retrieving complementary content rather than
repetitive information, ensuring a broader clinical context in generated reports.
(2) We introduce a medical lexicon-weighted cross-entropy loss that explicitly
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Fig. 1. The overview of our proposed DrLS framework.

prioritizes critical medical chest-specific terms, ensuring the model is sensitive
to chest-specific clinical content while maintaining linguistic fluency. (3)We also
introduce a sentence-level semantic loss that helps the model focus on the mean-
ing of sentences, rather than merely on grammar or superficial word matching,
ensuring the generated reports are more useful, reliable, and aligned with clinical
expectations. (4)We evaluate our method on the MIMIC-CXR dataset, demon-
strating its superiority over existing methods and its effectiveness in enhancing
both the accuracy and clinical relevance of the generated radiology reports.

2 Method

An overview of the proposed method is illustrated in Fig. 1, which can be mainly
divided into three parts that are introduced hereafter.

2.1 Diversity-Controlled Retrieval Strategy

Inspired by the effectiveness of Determinantal Point Processes (DPP) in opti-
mizing subset selection [9], we propose a diversity-controlled retrieval strategy
to reduce redundancy and ensure broader clinical knowledge coverage, as shown
in Fig. 1. Given a set of candidate historical reports S, we define a positive semi-
definite kernel matrix L, where each element is computed as Lij = qi · sij · qj ,
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where qi represents the relevance score between the historical case X-ray im-
age Ii and the current X-ray image Iq. This score is computed based on the
feature vectors of Ii and Iq, extracted via the cross-modal alignment module
in the pre-trained SEI method [12], and is defined as qi = sim(f(Ii), f(Iq)).
Here, sim(·, ·) represents the dot product similarity measure. Additionally, sij
quantifies the textual similarity between the reports of historical cases Ri and
Rj , which is computed using cosine similarity based on a pre-trained Sentence
Transformer [15]. Then, DPP determines the selection probability of a subset
Y ⊆ S by computing the determinant of its corresponding submatrix:

P (Y ) =
det(LY )∑

Y ′⊆S det(LY ′)
(1)

where det(LY ) represents the determinant of the submatrix corresponding to
the selected subset Y . The denominator sums over all possible subsets Y ′ ⊆ S,
ensuring that P (Y ) is properly normalized as a probability distribution. To effi-
ciently select a diverse and representative subset, we adopt a greedy optimization
algorithm, which iteratively selects the report that maximizes determinant gain:

arg max
i∈S−Y

[
log det(LY ∪{i})− log det(LY )

]
. (2)

2.2 Medical Lexicon-Weighted Cross-Entropy Loss

To enhance the model’s sensitivity to critical medical information, we construct
a chest-specific medical lexicon and integrate it into a weighted cross-entropy
loss function, emphasizing important anatomical structures and disease-related
terms. The construction of the medical lexicon follows a combination of auto-
mated extraction and manual review to ensure its medical relevance and high
quality. First, we use RadGraph [7] to analyze radiology reports and extract
anatomical structures and observations as candidate medical terms. Then, we
apply regular expressions (Regex) to extract potential medical terms while re-
moving irrelevant short words (e.g., "cm" and numbers), followed by lowercas-
ing and deduplication to ensure uniqueness. To further refine the high-quality
medical terms, we utilize the GPT-4o-mini API for term filtering across the
predefined eight categories, as shown in Fig.1, ensuring that only the most rele-
vant anatomical structures, diseases, observations, radiological descriptors, and
medical conditions are retained for radiology reports. Finally, our research team
manually reviews the GPT-processed terms, removing redundant or irrelevant
words to form a stable medical lexicon Vmed.

To emphasize the importance of medical terms, we introduce a medical
lexicon-weighted mechanism into the general language model used loss function
(cross-entropy loss), enhancing the model’s focus on critical medical informa-
tion. Given a generated report token ỹ, we define the medical lexicon-weighted
cross-entropy loss Lmlwce as follows:

Lmlwce = −
M∑
i=1

ω(ỹi) · logP (ỹi|I, hk, p, {ỹj|j<t}) (3)
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ω(yi,t) =

{
λmed, if yi,t ∈ Vmed

1, otherwise
(4)

where ω(ỹi) is the weight for ith predicted token ỹi, and M, I, hk, p, {ỹj|j<t}
denote the maximum length of tokens generated by the text decoder, the X-ray
image being processed, the set with k = 2 historical cases, indication prompt
and the tokens generated up to time step t, respectively. Here, λmed > 1 is the
weighting factor for medical terms, which amplifies the loss associated with key
medical words, ensuring the model prioritizes them during training.

2.3 Semantic-Level Loss for Clinical Coherence

In the task of radiology report generation, traditional cross-entropy loss primar-
ily focuses on word-level matching, often neglecting overall semantic consistency.
This limitation can lead to generated text that deviates from medical facts at
the sentence level. To address this issue, we propose a semantic-level loss that
enhances the global semantic representation of generated reports, ensuring that
the model captures the deep semantic information inherent in medical texts.
Our semantic loss is applied to the log-softmax probability distribution output
by the text decoder, rather than being applied to the generated text. Specifically,
given the log-softmax probability distribution logσ(P (ỹ|I, hk, p)), we design a dif-
ferentiable temperature-scaled soft-argmax function to obtain the approximate
argmax result, which is formulated as,

Sτ (ỹ) = σ

(
exp(logσ(P (ỹ|I, hk, p)))

τ

)
(5)

where τ = 0.001 is a temperature hyperparameter that controls the smoothness
of the softmax function, thus enabling the differentiable approximation of the
argmax result. To obtain sentence-level semantic representations, a fine-tuned
SciBERT [1] on radiology reports is used, especially the encoder fen and word
embedding layer femb. The word embeddings of the soft prediction Sτ (ỹ) is
obtained by multiplying it with the embedding matrix Wemb of the word em-
bedding layer, Sτ (ỹ) ·We. For the word embeddings of ground truth text can be
easily obtained, femb(y). Then, the proposed sentence-wise semantic loss Lsws

is defined as,
Lsws = 1− cos(fen(Sτ (ỹ)), fen(femb(y))) (6)

where cos(·, ·) is the cosine similarity function. and fen(∗) is the sentence-wise
embedding of the input ∗, which is obtained from the the encoder’s fen output
by taking the first token (the [CLS] token) of the last hidden state. Finally, our
total loss function combines medical lexicon-weighted cross-entropy loss Lmlwce

and this sentence-wise semantic loss Lsws, weighted by α and β to balance word-
level accuracy and semantic consistency, with the overall optimization objective
formulated as:

Ltotal = αLmlwce + βLsws (7)
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2.4 Implementation details

For network architecture, we utilize ResNet101 [6] as the image encoder, SciB-
ERT [1] as the text encoder, and a memory-driven Transformer from R2Gen
[3] as the text decoder. To reduce computational costs, we first retrieve the top
100 most similar historical cases based on image similarity and then apply our
proposed diversity-controlled retrieval strategy to optimize report selection. We
train our model on an NVIDIA GPU (Quadro RTX A6000) using the AdamW
optimizer with an initial learning rate of 1.0×10−5, a weight decay of 7.0×10−5,
and a batch size of 32. The loss parameters are set to α = 0.7, β = 0.3, and
λmed = 2.

3 Experiments and Results

3.1 Dataset and Evaluation Metrics

We conduct experiments on MIMIC-CXR v2.0.0 [8], a large-scale public dataset
of chest X-rays collected from Beth Israel Deaconess Medical Center in Boston,
containing 377,110 images from 227,835 radiographic studies. We adopt the of-
ficial MIMIC-CXR split, where the original data includes 368,960 images for
training, 5,159 for testing, and 2,991 for validation. For consistency and fair
comparison, we follow the preprocessing approach in the SEI method [12], re-
moving samples without reports or containing anomalies, resulting in a final
dataset of 269,239 images for training, 2,113 images for validation, and 3,852
images for testing.

We employ two sets of evaluation metrics: linguistic quality metrics and clin-
ical consistency metrics, following those used in SEI work [12]. The linguistic
quality metrics including BLEU-2 (BL-2), BLEU-4 (BL-4), METEOR (MTR)
and ROUGE-L (R-L). Specifically, BL-2 and BL-4 assess lexical similarity by
measuring n-gram overlap between the generated and reference reports. MTR
provides a more comprehensive evaluation of lexical similarity by considering pre-
cision, recall, synonymy, stemming, and word order. R-L measures the longest
common subsequence between the generated and reference reports, evaluating
both precision and recall. The clinical consistency metrics focus on assessing
factual accuracy and clinical correctness, including F1,mic−5 CheXbert (CX5),
F1,mic−14 CheXbert (CX14), and F1 RadGraph (RG). Meanwhile, we evalu-
ate the generated reports of our method and comparison approaches with the
ground truth report truncated at various lengths Mgt ∈ {60, 80, 90, 100, Cpl.} to
assess coherence and integrality comprehensively, where Cpl. means the complete
length of reference reports.

3.2 Comparison with State-of-the-art

Table 1 presents a detail comparison between our method and several main-
stream radiology report generation models, including R2Gen [3], R2GenCMN [2],
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Table 1. Comparison of our method with state-of-the-art approaches on MIMIC-CXR.
The best values with Mgt of Cpl. are highlighted in bold

Methods Mgt BL-2 BL-4 MTR R-L RG CX5 CX14

R2Gen [3] 100 0.218 0.103 0.137 0.264 0.207 0.340 0.340
Cpl. 0.209 0.097 0.135 0.266 0.211 0.339 0.338

R2GenCMN [2] 100 0.218 0.106 0.142 0.278 0.220 0.461 0.278
Cpl. 0.198 0.090 0.133 0.268 0.223 0.464 0.393

CGPT2 [14] 60 0.248 0.127 0.155 0.286 0.223 0.463 0.391
Cpl. 0.204 0.102 0.138 0.277 0.237 0.483 0.434

M2KT [23] 80 0.237 0.111 0.137 0.274 0.204 0.477 0.352
Cpl. 0.204 0.085 0.133 0.244 0.210 0.483 0.413

RGRG [21] Cpl. 0.249 0.126 0.168 0.264 - 0.547 0.447

SEI [12]

60 0.268 0.148 0.167 0.301 0.236 0.509 0.445
80 0.257 0.140 0.162 0.300 0.247 0.535 0.457
90 0.251 0.137 0.160 0.300 0.248 0.539 0.459
100 0.247 0.135 0.158 0.299 0.249 0.542 0.460
Cpl. 0.238 0.128 0.154 0.296 0.249 0.545 0.460

Ours(DrLS)

60 0.265 0.151 0.164 0.309 0.250 0.511 0.451
80 0.254 0.143 0.162 0.308 0.265 0.549 0.469
90 0.248 0.140 0.160 0.307 0.268 0.558 0.473
100 0.245 0.138 0.159 0.307 0.269 0.562 0.475
Cpl. 0.240 0.135 0.157 0.305 0.271 0.565 0.477

Table 2. Ablation study on MIMIC-CXR. "w/o Div.": replacing by the similarity
historical cases retrieval used in the SEI-baseline, "w/o Lmlwce": degrading to standard
cross entropy loss, and "w/o Lsls": without the semantic loss. SEI-Baseline refers to
the original SEI model.

Methods Mgt BL-2 BL-4 MTR R-L RG CX5 CX14

SEI-Baseline 100 0.247 0.135 0.158 0.299 0.249 0.542 0.460

Ours(DrLS) 100 0.245 0.138 0.159 0.307 0.269 0.562 0.475

w/o. Div. 100 0.245 0.136 0.158 0.303 0.263 0.562 0.469

w/o. Lmlwce 100 0.245 0.135 0.157 0.303 0.260 0.552 0.471

w/o. Lsws 100 0.250 0.140 0.162 0.307 0.267 0.554 0.475

CGPT2 [14], M2KT [23], RGRG [21] and SEI [12]. Compared to these meth-
ods, our model achieves the best performance on Cpl.-wise evaluation across
all clinical consistency metrics, with RG of 0.271, CX5 of 0.565, and CX14 of
0.477, demonstrating its superior reliability in generating clinically accurate and
factually consistent reports. Additionally, it remains strong competitiveness in
linguistic quality metrics, ranking 2nd in BL-2 (0.240), 1st in BL-4 (0.135), 2rd
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Fig. 2. Generated radiology report examples. Colors highlight key observations in the
ground truth, with matched segments in the generated reports shown in the same
colors, illustrating model performance in capturing clinical information.

in MTR (0.157), and 1st in R-L (0.305). We further present qualitative examples
of generated reports, comparing report completeness and clinical relevance. As
shown in Figure 2, our method generates reports with more comprehensive clini-
cal information than the baseline SEI method, further validating its effectiveness
in radiology report generation.

3.3 Ablation Study

To assess the contribution of each component in our method, we conduct an
ablation study on the MIMIC-CXR dataset, as shown in Table 2. Replacing our
diversity-controlled retrieval with the similarity-based historical case retrieval
used in the SEI-Baseline [12] reduces R-L and RG, highlighting its role in en-
hancing clinical factual completeness. Degrading our proposed medical lexicon-
weighted cross-entropy loss Lmlwce to a standard cross-entropy loss results in
declines across all metrics, confirming its importance in improving both lexical
overlap and clinical accuracy. Meanwhile, removing the sentence-wise semantic
loss Lsws slightly improves linguistic quality metrics but lowers RG and CX5,
suggesting a trade-off between fluency and factual correctness. These findings
demonstrate that each component contributes uniquely to report generation,
with our full model achieving the best balance between linguistic quality and
clinical relevance.

4 Conclusion

We propose DrLS, a novel framework for radiology report generation that inte-
grates a diversity-controlled retrieval strategy, a medical lexicon-weighted loss,
and a sentence-wise semantic loss to enhance both clinical accuracy and lin-
guistic coherence. Our approach reduces redundancy in retrieved reports, priori-
tizes key medical terms through a domain-specific lexicon, and improves factual
consistency by aligning sentence-level semantics. Extensive experiments on the
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MIMIC-CXR dataset demonstrate that our method outperforms existing models
in clinical consistency metrics while maintaining strong performance in linguis-
tic quality. Ablation studies further confirm the effectiveness of each component.
Extensive experiments on the MIMIC-CXR dataset demonstrate the effective-
ness of our approach in producing clinically precise and linguistically coherent
radiology reports, underscoring its potential for real-world medical applications.
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