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Abstract. We introduce a novel composite total variation (TV) and
its solution algorithm with their application to multi-echo, respiratory
motion-resolved 5D (3D space + 1D respiratory motion + 1D echo sig-
nal evolution) compressed sensing (CS) abdominal MR image recon-
struction. The proposed formalism ensures a sparse representation be-
tween multi-echo images with varying contrast—a vital feature that
needs to be preserved—making it highly suitable for applications in
multi-dimensional computational /quantitative imaging. The key idea of
the proposed composite TV and its formal definition were inspired by
the observation that the spatial gradient of difference images in multi-
echo MRI appears sparse. Throughout extensive experiments on a small
number of healthy volunteers, we have demonstrated improved perfor-
mance of the proposed method in 5D motion-resolved CS reconstruction
of multi-echo MRI data compared to the state-of-the-art method. We
have also demonstrated improved performance of the proposed method
in quantitative tissue parameter mapping (such as R2*, proton den-
sity fat fraction, and quantitative susceptibility mapping) across a wide
range of undersampling factors. In conclusion, the proposed method en-
ables vastly accelerated motion-resolved multi-echo CS-MRI minimally
impacting the quantification of downstream tissue parameters.

Keywords: Compressed sensing - Model-based MR image reconstruc-
tion - Non-Cartesian multi-echo MRI. - Quantitative imaging

1 Introduction

Free-breathing multi-echo gradient echo (mGRE) MRI has recently emerged as
a new imaging technique [1,14,17,21,22]. This technique acquires 3D volumetric
images at multiple time points, encoding a 1D echo signal evolution at each voxel
over time (on the order of milliseconds). The slower, second-scale respiratory mo-
tion embedded in the 4D spatiotemporal mGRE data can then be retrospectively
resolved to mitigate motion-induced errors [8]. Free-breathing mGRE MRI with
respiratory motion-resolved reconstruction has enabled voxel-wise quantification
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of R2*, proton density fat fraction (PDFF), and tissue magnetic susceptibil-
ity [14,21,22], offering great potential for use in patient populations—such as
children or certain adults—where maintaining a breath-hold is impractical.

Despite its free-running and/or free-breathing capability, a major challenge
in its clinical adoption is the lengthy acquisition time. This increases the like-
lihood of subject bulk motion that may not be adequately corrected or re-
solved under the typical assumption of strictly periodic motion (e.g., respi-
ration). Moreover, there is a trade-off between high isotropic resolution and
maintaining a shorter acquisition time. Accurate tissue parameter mapping of-
ten requires high isotropic resolution to avoid undesirable bias [16,26]. Ideally,
such a 5D imaging dataset would require multi-way array or tensor-based re-
construction/processing, but this area has not been extensively explored. One
approach is to reconstruct all echoes simultaneously using ¢; coupling [14], which
results in a 4D echo-by-echo reconstruction that neglects the correlations be-
tween echoes. We note that several MRI reconstruction studies have explored
TV-like joint smoothness constraints across images with significant contrast dif-
ferences [2,10, 11, 23]. Related TV-based regularizers for multi-contrast images
have also been proposed in the image processing literature [4,5,18,25]. Finally,
low-rank methods [3, 6, 24] have shown promise. These studies were primarily
designed for 2D/3D Cartesian imaging of static organs like the brain with lit-
tle attention to tissue parameter mapping and have not been extended to 5D
non-Cartesian motion-resolved mGRE MRI.

We hypothesize that true 5D processing enables further acceleration by intro-
ducing a novel generalization of TV tailored for free-breathing mGRE data. The
proposed reconstruction approach exploits data sparsity among the multi-echo
images through this generalized TV—referred to as composite TV throughout
the paper. Integrating composite TV along the echo dimension and temporal TV
along the motion-state dimension, our method performs multi-way array (5D)
reconstruction, substantially accelerating free-breathing mGRE MRI. Note that
classical TV and existing generalizations do not account for the notion of spar-
sity among multi-echo images because the contrast differences between echoes
are not inherently sparse and must be preserved. The challenge is thus to devise
a new regularizer such that it preserves image contrast while sparsifying relevant
features across echoes. Our contributions/findings are as follows: (a) We intro-
duce a novel composite TV that imposes sparsity between echoes; (b) We derive
a solution algorithm compactly expressed via the standard primal-dual hybrid
gradient (PDHG) method; and (¢) We demonstrate the feasibility of highly ac-
celerated free-breathing, motion-resolved mGRE MRI for liver R2*, PDFF, and
quantitative susceptibility mapping (QSM) with high isotropic resolution.

2 Theory

2.1 Problem Formulation & Prior Works

Let @ be the number of fully-sampled k-space samples that meet the Nyquist
sampling criterion. Let T' be the number of latent respiratory phases (from the
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end-expiratory to end-inspiratory states) embedded in the incoherently sampled
k-space samples g € C? during free breathing. Let P, : C¥ — C®? be some
permutation matrix that reorders g = (¢',...,¢%) to Prg = § = (§*,...,3%)
such that the g(»—VLQ/TI+1  gnlQ/T] belong to the n-th motion state where
n = 1,...,T. Notice that the k-space samples that fall into each motion state
n is retrospectively undersampled by a factor of T, i.e., the number of k-space
measurements for each motion state is approximately |Q/T]. As g is incoher-
ently sampled uniformly covering the entire k-space (so is §), one can utilize CS
reconstruction.

Let N be the image size, and let v € CN¥'T be a set of vectorized motion-
resolved images to be reconstructed from §. Feng et al. [8] cast the problem by
incorporating the ¢;-norm of the forward difference between motion states into
the cost function as follows:

Wreng (w3 §) = [|Au = gl[fy + Aml| AT ull1, (1)

where A : CN'T — C@ is the MRI encoding operator, A} : CN'T — CN'T is the
forward difference operator along the motion state, and A,, > 0. The weighted
least-squares fidelity ||Au — §||%, is given as (Au — §)HW (Au — §) where the
density compensation factor is commonly chosen for W and A" is the adjoint of
. —T

A (the conjugate transpose AH = 4 ).

Suppose that we are now given an mGRE k-space data ¢p,...,gr where
gj € C® for j = 1,...,E, and some permutation matrix Py. Then, g; is a
reordering of g; by Py, i.e., §; = Prgj. Let ui,...,up € CN'T be a set of
motion-resolved mGRE images. Kang et al. [14] extended (1) as follows:

E E
WK&ng(ulv'"7uE;§1""7gE) = Z”AU’] _.g]”%/V +)\mZ||A7—;u]||1 (2)
j=1 j=1

Note that an extension of (2) to multi-coil reconstruction is straightforward.

2.2 Proposed Method & Numerical Optimization

Denoting the concatenation of u1,...,ug as u € CN'T°F and the concatenation
of g1,...,gg as g € C9F we propose to minimize the following cost function
Yours(w; ) £ ||Au — glIy + Al AT ull + Ael|(Vx 0 A ul[2,1 (3)

where Vy : CNVTE 5 CINT-E)X3 ig the spatial gradient operator and ||-||2.; is a
matrix norm that maps v € CVT-E)x3 o 3~ /22| |? fori=1,.... NT-E
and j = 1,2, 3. Extending the operator A and the diagonal matrix W to accom-
modate the dimensions of the vectorized u and g is straightforward, and A, > 0 is
a regularization parameter. The composite operator inside the {31 norm extracts
a contrast-invariant sparse representation—while contrast changes across echoes
are not sparse, image edges remain largely sparse. Noise-like undersampling arti-
facts (as the difference of two Gaussians is also Gaussian), extracted with sparse
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Fig. 1. Illustration of data acquisition and respiratory motion-resolved image recon-
struction. Six echoes (TE1l to TE6) are sequentially acquired within a single TR as
schematized in the pulse timing diagram. Cones readouts are uniformly distributed in
k-space using a pseudorandom view order. The center of k-space (DC) is used to esti-
mate the underlying respiratory motion. The number of motion states to be resolved
is set to 6, and the corresponding respiratory motion-resolved images are shown.

edges, are selectively suppressed by the {5 ; norm, effectively preserving sharp
edges.

We provide implementation details of a numerical method that solves the
cost function (3) in a multi-coil setting. Let C' be the number of coil elements;
and let Ig : CN'TE — C(C+3) NT-E 116 g linear operator such that u — Igu =

[u',...,u",u",u",u"]". Then, the minimization problem (3) can be reformu-
—_—

C times

lated as the following saddle-point problem [7]:

Find u,v such that minmaxRe ((K o Ig)u,v) — Ho, (4)

u v

where the linear operator K : C(CH3)NT-E _, CQF y ...« C¥F xCNTE

C'times
CWVT-E)X3 is defined as
WY2ES; - 0 0 0
K= 0 L WY2ESS 0 0 ; (5)
0 e 0 AL 0
0 e 0 0 VxoAF
where F' is the nonuniform Fourier transform operator, Sy, ..., Sc¢ are coil sen-
sitivity maps, and H : COF x ... x COF xCNTE x CNTE)X3 5 R ¢ :=
C'times

(pla -y PCyqm, QX) — H(I)h -y PCyqm, CIX) = chzl R6<W1/2~c,pc>+(1/2)||pc||%+
00, (gm) + 00, (¢x)- Here, 09, (¢m) = 0 if g, € Q. and +oo elsewhere; dg, (+)
is similarly defined.

The convex sets Q,, and Qx are given as Q. = {gm lgmlloo <
Am} and Qx = {gx € CWN-T-E)x3 . [lax|loo < Ac}, respectively. Then, a saddle

c (CN~T~E
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Fig. 2. Desired effect of incorporating ||Vx o AT - ||21; see Section 4.

point (u,v) that satisfies 0 € IX (K*9) and 0H (%) € K(Ig) can be found by
the primal-dual hybrid gradient (PDHG) method [7] as follows.

" = (I + 00H) 1 (v* + o K1gd"); (6a)
uk-‘rl _ gk: _ TIgKHvk-‘rl; (6b)
Qk"rl — 2Qk+1 _ Qk (GC)

The resolvent (proximal) operator (I+cdH)~" associated with Re (W/2§., p.)+
(1/2)]|pe||3w can be derived as

. e = pell 1/2 1 2 . pe— oW
Fe = argilcnm% + Re (WY2§,,7.) + §||rc||2 = T = #,
for ¢ = 1,...,C. The derivation of the projection operators associated with

the indicator functions dg,, (-) and dg, (-) is straightforward using the Moreau
decomposition [20] and the soft-thresholding operator.

3 Experimental Methods

MRI Data Acquisition & Imaging Parameters. Upon IRB approval, 3D
mGRE cones MRI implemented based on [9,14,17] was performed on 3 healthy
subjects using a 3T clinical scanner (GE Healthcare, Waukesha, WI). All sub-
jects underwent the imaging procedure with free breathing and one of the sub-
jects was instructed to perform deep breathing throughout the scan. Imaging
parameters for the 3D mGRE cones MRI were: initial TE/ATE/TR = 0.032/1.4-
1.5/11.4-11.5 ms, #TEs = 6 (#shots = 1, ETL = 6), FA = 3°, in-plane resolution
= 2 x 2 mm?, slice thickness = 2 mm, rBW = 1106-1315 Hz/Pz, scan time
=5 min 15 sec to 7 min 37 sec (without acceleration), readout duration = ~1
ms, and #interleaves = 27,651 to 39,699. Echo spacing for cone acquisition was
set at 1.4-1.5 ms to facilitate in- and out-of-phase data acquisition. This was
combined with an ultrashort initial TE to capture the rapid T2* signal decay.
The data acquisition scheme and reconstruction strategy are illustrated in Fig. 1.
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Fig. 3. Reconstructed images of a healthy subject instructed to perform deep breathing

with effective undersampling factors 6X (i.e., no ACC and 6 motion states), 24X (i.e.,
4X ACC and 6 motion states), and 48X (i.e., 8X ACC and 6 motion states) are shown.

Image Reconstruction & Tissue Parameter Mapping. In our context,
acceleration (ACC) refers to retrospective undersampling applied prior to motion
binning, with the goal of reducing scan time. The fully-sampled k-space raw data
was retrospectively undersampled by factors ranging from 2X to 10X, achieved
by discarding the corresponding number of readouts. This was done in a manner
that allows for straightforward implementation of prospective undersampling.
Then, motion binning which is another form of retrospective undersampling was
carried out subsequent to 2X to 10X ACC. In our paper, the number of motion
states was set to 6; therefore, the overall effective undersampling factors were
from 6X (No ACC) to 60X (10X ACC with 6 motion states).

Implemented reconstruction methods were: 1) motion-averaged gridding, 2)
hard-gated gridding applied to each motion state, 3) motion-resolved (2), and
4) the proposed (3) reconstructions. For 2), 3), and 4), the center of k-space
of each cones readout was extracted to estimate the respiratory motion [12,13]
as illustrated in Fig. 1. For 3) and 4), the PDHG algorithm described in Sec-
tion 2.2 was implemented in Python using the nuFFT routine in SigPy [19].
All reconstructions were run on a 4-way Nvidia A100 GPU machine (80GB of
video memory per GPU). These GPUs were utilized concurrently. We considered
the following combinations of regularization parameters: 1077 < \,, < 1074
and 1077 < A\, < 1074 for all effective undersampling factors = {6X, 12X,
24X, 36X, 48X, 60X} per subject. From our subjective evaluation, we sequen-
tially chose the best A,, = 7 x 107% and A\, = 1 x 107 for all subjects. Us-
ing the standard post-processing pipeline [14,17], R2*, PDFF, and QSM were
generated from the reconstructed complex-valued mGRE images. The model
5(%,1) = (pu(x) + pp(x)e 2 est)e= B2 X)=2n /o) for ¢ = TEy,..., TEg was
fitted to the reconstructed mGRE images with respect to p,, (water), ps (fat),
R2*, and f, (BO field) voxel by voxel, i.e., for all x. Then, PDFF was computed
as |pf(x)]/(|pw(x)| + |pw(x)]). For QSM, the fat-referenced nonlinear dipole in-
version was performed with the same set of reconstruction parameters and back-
ground field removal presented in [14].
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Fig. 4. Quantitative parameter maps of a healthy subject with effective undersampling
factors 6X (i.e., no ACC and 6 motion states), 24X (4X ACC and 6 motion states), 48X
(8X ACC and 6 motion states), and 60X (10X ACC and 6 motion states) are shown.

Image Quality Assessment & ROI-based Quantification. Due to the
nature of the study, acquiring fully sampled motion-resolved MRI data is in-
feasible as subjects breathe freely during the 6-8 minute imaging period. The
concept of “ground truth” is not applicable in this context; therefore, we used
the motion-resolved reconstruction (2), i.e., [14] from 6X undersampled k-space
data (no ACC and 6 motion states) was considered as the reference to calculate
the relative error, PSNR, SSIM, and MSE. To assess contrast fidelity, a region
of interest (ROI) with a radius of 10 voxels was placed in the tissue of interest
(liver parenchyma) on three consecutive slices of the computed tissue parame-
ter maps (R2*, PDFF, and QSM), while avoiding large vessels. Then, mean +
SD was calculated for 6-60X undersampling factors and compared between the
methods.

4 Experimental Results

The desired effect of incorporating ||[Vx o AT - |21 is demonstrated in Fig. 2.
The key observation is that the motion-averaged mGRE images (neither accel-
erated nor retrospectively undersampled for motion binning) exhibit a sparse
representation after the Vo AY operation (image in orange bounding box). The
operator AT alone does not provide such a desired representation (third column
from the left) due to the difference in contrast between TE1 and TE2 images,
which encodes important tissue information. Hard-gated reconstruction of the
same subject (6X ACC and 6 motion states, i.e., overall 36X undersampling),
exhibits a noisy representation after the V o A} operation. This noisy represen-
tation is due to undersampling artifacts across the echoes. Compared to Kang
et al. [14] (6X ACC and 6 motion states), the proposed method (6X ACC and 6
motion states) produces a less noisy representation after the V o AF operation,
as a result of reduced undersampling artifacts.

Reconstructed images of a healthy volunteer instructed to perform deep
breathing are shown in Fig. 3 with different undersampling factors. Compared to
Kang et al. [14] where image quality rapidly deteriorates due to increased under-
sampling artifacts, the proposed method demonstrates the ability to maintain
visual image quality. The relative differences between the reference (Kang et al.
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Table 1. Image quality assessment and ROI-based measurements. PSNR/SSIM (higher
the better); MSE (lower the better). R2* /PDFF/QSM are reported as mean + SD.

Subj #1 Metric No ACC  2X 4X 6X 8X 10X
PSNR 53.9393 35.2265 32.8812 32.0261 30.7820 29.0965
Ours  SSIM  0.9951  0.9003 0.8265 0.8021 0.7577 0.7596
MSE 0.0040 0.3002 0.5151 0.6272 0.8352 1.2313
PSNR Inf 35.0066 32.1682 31.1111 29.6637 28.4149

[14] SSIM 1 0.8946 0.7850 0.7389 0.6738 0.6856
MSE 0 0.3157 0.6070 0.7743 1.0805 1.4405
Subj #1 Metric No ACC 4X 8X 10X

R2*  44.014+24.87 55.00+£28.20 63.80+33.81 72.51+37.31
Ours PDFF  6.794+3.00 5.61+3.06 6.91+3.15 5.71£2.96
QSM —0.1940.09 —-0.21£0.13 —0.254+0.18 —0.28+0.17
R2*  44.014+25.55 53.264+30.83 64.95+41.61 72.24446.38
[14] PDFF  7.3243.45 8.59+4.46 10.69+6.14  10.8945.54
QSM —-0.1940.10 —0.18+0.17 —0.33+£0.27 —0.33+0.25

Subj #2 Metric No ACC  2X 4X 6X 8X 10X
PSNR 55.3231 39.2684 37.3378 35.8115 34.8276 34.2043
Ours  SSIM  0.9936  0.9347 0.9055 0.8798 0.8551 0.8477
MSE 0.0029 0.1183 0.1846 0.2623 0.3290 0.3798
PSNR Inf 38.7403 36.3399 34.5567 33.3129 32.7903

[14] SSIM 1 0.9201 0.8611 0.8086 0.7581 0.7418
MSE 0 0.1337 0.2323 0.3502 0.4663 0.5260
Subj #2 Metric No ACC 4X 8X 10X

R2*  34.00£19.52 33.69+23.86 43.02+£23.79 47.67+24.62
Ours PDFF  7.85+3.39 7.98+3.64 7.58£2.97 8.68+3.10
QSM  —0.41£0.10 —0.32+0.16 —0.27£0.14 —0.43+0.13

R2*  34.38420.78 37.33+£27.67 49.83+33.67 56.97+£37.34
[14] PDFF  8.75+4.12 11.29+5.69 12.88+6.41 14.14+7.41
QSM —0.38£0.12 —0.28+£0.22 —0.20£0.26 —0.23£0.30

Subj #3 Metric No ACC  2X 4X 6X 8X 10X
PSNR 54.0232 39.3264 36.4982 35.1042 34.6145 33.6208
Ours SSIM  0.9899 0.9399 0.8999 0.8738 0.8626 0.8440
MSE  0.0040 0.1168 0.2240 0.3087 0.3456 0.4344
PSNR Inf 38.6929 35.6087 33.9137 33.2628 32.2565

[14] SSIM 1 0.9200 0.8450 0.7804 0.7440 0.7035
MSE 0 0.1351 0.2749 0.4061 0.4718 0.5948
Subj #3 Metric No ACC 4X 8X 10X

R2*  65.38424.39 90.28437.10 122.03+56.39 162.09+67.02
Ours PDFF  8.69%+2.67 9.37£3.36  10.89+4.06  12.16+4.88
QSM  —0.30+0.07 —0.32+0.12 —0.11£0.20 —0.2740.85
R2*  65.27+£25.28 89.98+43.13 116.61+65.33 150.414+85.18
[14] PDFF  9.10+3.42 11.4745.05 15.50+6.91 17.54+8.11
QSM —0.324+0.08 —0.35+£0.16 —0.49+0.32 0.02+1.06
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with no ACC) and the proposed method (vs Kang et al.) were 28% (vs 31%),
39% (vs 45%), 46% (vs 55%), 49% (vs 60%), and 54% (vs 67%) for 2X to 10X,
confirming the difference in visual image quality. For the other two subjects, the
relative differences were: 23% (vs 24%), 32% (vs 35%), 35% (vs 40%), 41% (vs
47%), and 44% (vs 50%) for 2X to 10X (Subj #1); and 25% (vs 27%), 32% (vs
36%), 37% (vs 44%), 42% (vs 51%), and 44% (vs 54%) for 2X to 10X (Subj #2).
Furthermore, consistently improved PSNR, SSIM, and MSE in Table 1 agree
with the above observations and relative differences. R2*, PDFF, and QSM of a
healthy subject with acceleration factors ranging from no ACC to 10X are shown
in Fig. 4. Unlike Kang et al. [14] where image quality notably deteriorates, which
may be characterized by "salt and pepper" noise, the proposed method shows
minimally affected image quality. ROI-based R2*, PDFF, and QSM measure-
ments of healthy volunteers are presented in Table 1. The proposed method
exhibits smaller standard deviations across all undersampling factors than Kang
et al. [14], suggesting a higher precision level. The visual assessment of Fig. 4
can be confirmed by standard deviations of the measurement.

5 Discussion and Conclusion

Although the feasibility of the proposed method was only demonstrated on a
small number of subjects, the proposed novel composite TV and its solution
algorithm has enabled 5D CS reconstruction of non-Cartesian mGRE MRI data
across a wide range of effective undersampling factors, from 6X to 60X. Future
work will include a larger patient cohort, particularly those with known iron
overload or steatosis to further strengthen the study. In addition, the proposed
method will be applied to prospectively undersampled k-space data to validate
its robustness in providing reliable liver tissue parameters, comparing with our
recent study that demonstrated the feasibility of 5D reconstruction by exploiting
sparsity across spatial, motion, and echo dimensions [15].
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