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Abstract. Polyp segmentation is a representative task in computer-
aided clinical diagnosis in colonoscopy analysis. However, strict regu-
lations limit the availability of large, high-quality image-mask paired
datasets for segmentation. As a result, recent studies have focused on
models that generate images conditioned on masks. However, due to
rigid annotation constraints and a high reliance on fixed masks, the
synthesized images often exhibit limited variation, leading to a lack of
generalization in downstream tasks. This study introduces the Seman-
tic Interpolative Diffusion Model (SIDM), which applies interpolation to
both the given masks and the colonoscopy images to generate pairs of
interpolated masks and images. First, a background semantic label was
devised by labeling background regions based on the colonoscopy imag-
ing environment. Both the masks and the background semantic labels
are applied as multi-conditions to the diffusion model for colonoscopy
image generation. After training, interpolation on both the masks and
background semantic labels is performed at a chosen ratio. Applying
the interpolated masks and labels to the model generates an interme-
diate perspective of colonoscopy images that partially incorporates fea-
tures from each condition. By augmenting the dataset with these pairs of
interpolated masks and generated images with interpolated conditions,
segmentation models can extend the coverage of possible colonoscopy
scenarios and mitigate the limitations of fixed masks, leading to ro-
bust generalization. Experimental comparisons against existing gener-
ative models, using the same test data across different segmentation
models and different test datasets with the same model, demonstrate
the effective generalization of the proposed model. The code is available
at https://github.com/DSLab-MJU/SIDM.

Keywords: Diffusion model · Semantic Interpolation · Colonoscopy Im-
age Synthesis · Data Augmentation · Polyp Segmentation.

1 Introduction

Colorectal cancer (CRC) is a serious threat to human health and is the second
leading cause of cancer-related deaths worldwide. In particular, CRC remains

https://github.com/DSLab-MJU/SIDM
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Fig. 1. A schematic representation of the data augmentation process using a generative
model. (a) represents the data before augmentation, (b) illustrates augmentation using
existing generative models, and (c) shows augmentation using our proposed method.

one of the leading causes of cancer mortality in the United States, with over
150,000 new cases and 50,000 deaths expected in 2024 [21,22]. However, CRC
can be prevented through early detection and the removal of polyps using tech-
niques such as colonoscopy and wireless capsule endoscopy (WCE). Recently,
with the advancement of deep learning, polyp segmentation has been actively
leveraged for the automatic detection of polyps in colonoscopy[30]. However, due
to national and regional regulations on the public release of medical data[27,7],
there are significant challenges in constructing high-quality, large-scale datasets
for training polyp segmentation models. To address this issue, research has been
actively conducted on medical image synthesis using generative models to quan-
titatively increase the amount of available medical data[9,14,3,4].

As polyp segmentation requires a paired dataset of colonoscopy images and
corresponding masks, which annotate lesion areas, most generative models gener-
ate images conditioned on a given mask [5,6,28,16,17,25]. For instance, PolypDDPM[5]
leveraged a diffusion probabilistic model[11] by incorporating the mask into the
channel dimension as a conditioning factor, resulting in a 4% Intersection over
Union (IoU) improvement in U-Net++[31] segmentation performance after data
augmentation. Similarly, ArSDM[6], based on the SDM[28], used SPADE[16]
to leverage masks as conditioning inputs for image generation while employing
adaptive loss and refinement techniques. This approach demonstrated segmen-
tation performance improvements in PraNet[8], SANet[29], and PVT[2].

However, existing mask-to-image generative models generate colonoscopy im-
ages based on only given masks, allowing variations in images but keeping the
lesion regions constant. As shown in Fig. 1(b), this results in more diverse images
than the original data Fig. 1(a) but remains constrained by the fixed masks.

To address these issues, we propose the Semantic Interpolative Diffusion
Model (SIDM), which applies interpolation to both the given masks and the
background of colonoscopy images to generate pairs of interpolated masks and
images. Background semantic labels are newly defined based on the imaging
environment, such as colonoscopy videos or snapshot images, and are applied
as a condition to the diffusion model alongside masks for image generation.
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Fig. 2. Overall framework of SIDM. (a) Mask interpolation. (b) Background semantic
label interpolation. (c) The process where the trained SIDM generates images by in-
corporating the interpolated conditions from (a) and (b). The interpolated masks and
generated images are then paired and used for generative augmentation.

After training, interpolation in masks and background semantic labels at a cho-
sen ratio enables the generation of intermediate colonoscopy images that blend
features from both conditions. Consequently, interpolated masks and generated
colonoscopy images with interpolated conditions effectively expand the diversity
of colonoscopic scenarios, resulting in a more diverse augmented distribution, as
illustrated in Fig. 1(c), and mitigates issues related to fixed mask constraints.
By augmenting data with these interpolated masks and images, segmentation
models achieve improved generalization.

Our main contributions can be summarized as follows: 1) We propose the
SIDM, which interpolates both lesion masks and background semantic labels
to generate diverse pairs of interpolated masks and images. 2) SIDM newly
defines background semantic labels and devises multi-conditional diffusion model
with masks and background semantic labels for colonoscopy image synthesis. 3)
Experimental results demonstrate the superiority of our model over existing
generative models in segmentation performance after generative augmentation,
evaluating generalization using the same test data across different segmentation
models and different test datasets with the same segmentation model.

2 Method

The proposed SIDM first trains a diffusion model with masks and newly defined
background semantic labels as multi-conditions, as shown in Fig. 2. Interpola-
tion is then applied to both masks and background semantic labels, and the
interpolated masks and labels are fed into the trained model to generate corre-
sponding images. Finally, pairs of interpolated masks and generated images with
interpolated conditions are used as an augmenting dataset for segmentation.
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2.1 Mask Interpolation

The mask image y, representing the lesion region in a medical image, has a
binary structure and is denoted as I(x), where x represents pixel coordinates.
If a pixel belongs to the foreground, which represents the lesion region, I(x) =
1; otherwise, for the background, I(x) = 0. Instead of directly interpolating
binary masks, each mask is converted into a signed distance map that encodes
the distance from each pixel to the mask boundary, enabling more effective
interpolation by leveraging the continuous distance representation of the mask’s
foreground, as shown in Fig.2(a). The signed distance map is defined as:

ϕ(x) =

{
dinside(x), if I(x) = 1

−doutside(x), if I(x) = 0
. (1)

The distances are computed using the Euclidean distance defined as d(x) =
miny∈∂I ∥x−y∥, where ∂I means the boundary of the mask and dinside(x) is the
minimum distance from a pixel inside the lesion I(x) = 1 to ∂I, while doutside(x)
is the minimum distance from a pixel outside the lesion I(x) = 0 to ∂I.

To interpolate between two signed distance maps ϕ1 and ϕ2 from masks y1
and y2, we introduce an auxiliary dimension z ∈ [0, 1] where z = 0 corresponds
to ϕ1 and z = 1 corresponds to ϕ2, and perform linear interpolation according
to:

ϕ(x, z) = (1− z) · ϕ1(x) + z · ϕ2(x). (2)
Finally, the interpolated distance field ϕ(x, z) is converted into a binary mask

by thresholding at zero, which can be formulated as follows:

I(x, z) =

{
1, if ϕ(x, z) ≥ 0

0, if ϕ(x, z) < 0
, (3)

thereby generating interpolated binary mask I(x, z), which is yinterp.

2.2 Background Semantic Label Interpolation

The background semantic label is designed to control the background region.
The method of defining this label varies depending on the imaging technique
used in the colonoscopy dataset for training.

For datasets composed of independent 2D snapshot images, each background
region represents a different environment, so each image is assigned a unique
label. In contrast, for video-based sequence data, multiple frames are captured
within the same colon, meaning that while different background images exist for
each sequence, they globally share the same colon wall characteristics. Therefore,
all frames within the same sequence are assigned the same label.

Each label is designated as an integer and applied to model training using one-
hot encoding, as illustrated in Fig.2(b). During training, each image is associated
with its corresponding label, whereas during interpolation, linear interpolation
is applied between two labels c1, c2 with interpolation factor z as follows:

cinterp = (1− z) · c1 + z · c2. (4)
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2.3 Sampling with Semantic Interpolative Diffusion Model

Training The proposed SIDM is based on a diffusion model[11,18], which gen-
erates new data from an estimated data distribution pθ(x0) that approximates
the original data distribution x ∼ q(x0). SIDM estimates this distribution con-
ditioned on mask image y and background semantic label c. Diffusion model
consists of a forward and a reverse process. The forward process is a Markov
chain that involves gradually adding noise to the original data x0 over T steps,
which is defined as q(xt|xt−1) = N

(
xt;

√
1− βtxt−1, βtI

)
, where βt is the pre-

defined noise schedule. The reverse process starts with Gaussian noise xT and
aims to estimate the original data by predicting the added noise using model θ
at each step t over T steps, following the reverse Markov chain, formulated as:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt, y, c). (5)

In this process, the noise added at each step t is predicted conditioned on y
and c thereby enabling the model to take masks and labels as input to generate
corresponding images, formulated as:

pθ(xt−1|xt, y, c) := N (xt−1;µθ(xt, y, c, t), Σθ(xt, y, c, t)) . (6)

Here, µθ(xt, y, c, t) is defined as 1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, y, c, t)) where αt :=

1 − βt, ᾱt :=
∏t

s=1 αs and ϵθ is predicted using a SIDM Denoising U-Net, as
shown in Fig. 2. At each decoding stage of the SIDM Denoising U-Net, the
mask is integrated using SPADE[16], while the background semantic label is
incorporated through Linear and GELU[10] layers, as shown in Fig.2’s Semantic
Block. This facilitates the proper reflection of the conditions with the Classifier-
Free Guidance(CFG)[12] method employed. Additionally, to prevent overfitting
to the given mask, the adaptive loss with Wλ designed in ArSDM[6] is applied.
Wλ takes the value 1 − r when p = 1 and r when p = 0, where r is defined as
r = #(p=1)

H×W and #(p = 1) means the number of pixel p at (h,w) belongs to the
foreground. The loss function is defined as follows:

L = Ex0,y,c,ϵ

[
Wλ ·

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, y, c, t

)∥∥2] . (7)

Sampling The sampling process applies interpolation to the two masks and
background semantic labels at specific ratios, such as 1:1, 1:3, and 3:1, as de-
scribed in Sections 2.1 and 2.2, to extract yinterp and cinterp. These yinterp, cinterp
are then input into the SIDM, and generate corresponding image after iterative
reverse process as formulaed as pθ(x0:T ) := p(xT )

∏T
t=1 pθ(xt−1|xt, yinterp, cinterp).

For details, after T times following x̂t−1 = 1√
αt
(x̂t− βt√

1−ᾱt
ϵθ(x̂t, yinterp, cinterp, t))+

σtz start from x̂T ∼ N (0, I), the corresponding image x̂interp is generated.
Finally, the (yinterp, x̂interp) mask-image pairs are constructed and augmented

into the existing dataset for segmentation, as illustrated in Fig.2(c).
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3 Experiments and Results

Data Experiments were conducted on five polyp segmentation datasets: ETIS[23],
CVC-ClinicDB[1], CVC-ColonDB [24], EndoScene-CVC300[26], and Kvasir-SEG[13].
The segmentation model was initially trained on 1,450 images from CVC-ClinicDB
(550) and Kvasir (900) without augmentation. The generative model was then
trained on the same dataset, generating an equal number of additional sam-
ples, resulting in augmented 2,900 image-mask pairs for segmentation training.
Segmentation performance on unseen test datasets was evaluated using all im-
ages from EndoScene (60 images), CVC-ColonDB (380 images), and ETIS (196
images), along with the remaining 100 images from Kvasir and 62 images from
CVC-ClinicDB. For evaluation on the same test data with different segmentation
models, the remaining 162 images from Kvasir and CVC-ClinicDB were used.

Evaluation The experiments involved augmenting the dataset with generated
images and evaluating segmentation performance before and after augmentation.
The comparative generative models included ArSDM[6], SDM[28], SPADE[16],
and PolypDDPM [5]. To assess generalization, U-Net[19], U-Net++[31], and FPN[15]
were evaluated on the same split test data, while PraNet[8] and FCBFormer[20]
were tested on unseen datasets. This analysis examined whether different mod-
els exhibited consistent trends with generated images and whether performance
improved on unseen colonoscopy datasets, demonstrating generalization.

Implementation Details Ratios of 1:1, 1:3, and 3:1 were used in SIDM ex-
periments to represent balanced and biased interpolations. The 1:1 ratio blends
both inputs equally, while 1:3 and 3:1 emphasize one input and correspond to the
outer quartiles of the interpolation space. Image-mask pairs were chosen based
on differences in both components. Pairs with different background semantic la-
bels were considered distinct, regardless of mask similarity. For masks, selection
was based on size comparison with a threshold at zero. SIDM was implemented

Table 1. Quantitative results of segmentation after generative augmentation, evaluated
on the same test data across different models. “w/o Label” refers to the case without a
proposed background semantic label, implying that no image interpolation is applied.

Method Training Data U-Net[19] U-Net++[31] FPN[15] Average
Real Gen. Dice IoU F1 Dice IoU F1 Dice IoU F1 Dice IoU F1

No Aug 1450 0 75.1 65.9 85.8 73.8 64.8 85.2 76.4 64.8 86.4 75.1 65.1 85.8
+ArSDM[6] 1450 1450 78.4 70.6 87.8 78.7 70.3 87.9 86.3 78.6 92.1 81.1 73.2 89.3
+SDM[28] 1450 1450 78.4 69.9 87.7 78.0 70.2 87.6 87.1 80.7 92.6 81.2 73.6 89.3
+SPADE[16] 1450 1450 77.7 69.7 87.4 79.0 71.4 88.1 87.5 81.0 92.8 81.4 74.0 89.4
+PolypDDPM[5] 1450 1450 78.8 71.2 88.0 79.7 71.9 88.4 86.4 79.5 91.9 81.6 74.2 89.4

+Ours(w/o Label)(1:1) 1450 1450 79.8 72.0 88.5 77.9 70.0 87.5 84.2 75.9 90.9 80.7 72.6 89.0

+Ours(1:3) 1450 1450 79.0 71.2 88.0 77.7 69.8 87.4 88.1 81.6 93.1 81.6 74.2 89.5
+Ours(3:1) 1450 1450 80.3 72.3 88.7 81.3 73.5 89.3 86.5 79.0 92.2 82.7 74.9 90.1
+Ours(1:1) 1450 1450 80.8 72.8 89.0 79.8 72.1 88.5 87.7 80.4 93.3 82.8 75.1 90.3
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Fig. 3. Qualitative results of interpolated masks and generated images with background
interpolation. (a) illustrates examples of pairs. (b) compares images with and without
the background semantic label.

using PyTorch 1.11.0 and trained on an NVIDIA RTX 4080 GPU. The Adam
optimizer was used with a learning rate of 0.0001. The timestep t was set to 1000,
β ranged from 0.0001 to 0.02, and a CFG scale of 1.5 was used for sampling.

Results Fig. 3 illustrates how the proposed method constructs interpolated
generated pairs. Interpolation was applied to two masks from the 1,450 train-
ing samples at 1:3, 1:1, and 3:1 ratios to generate interpolated masks, which
were then used to generate images with interpolated background semantic la-
bels. A qualitative evaluation confirms that interpolation occurs in both masks
and background regions, following the specified ratios. Notably, in the second
column of the last row in Fig. 3(a), the transition from two masks merging
into one is clearly visible, along with background changes. Additionally, in all
examples, background areas with and without colon folds transition smoothly,
demonstrating effective background interpolation.

The interpolated mask-image pairs were then used for evaluation across dif-
ferent models on the same test data, as summarized in Table 1. The results
show that, on average, the SIDM with 1:1 interpolated augmentation achieved
the highest performance improvement, increasing from a pre-augmentation Dice
score of 75.1% to 82.8%, marking a 7.7% gain and setting a new state-of-the-art
(SOTA) among comparative models. Although U-Net performs best at a 1:1 ra-
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Table 2. Quantitative results of segmentation after generative augmentation, evalu-
ated on the same segmentation model across different test datasets. “w/o Label” refers
to the case without a proposed background semantic label, implying that no image
interpolation is applied.

Method Training Data EndoScene[26] ClinicDB[1] Kvasir[13] ColonDB[24] ETIS[23] Average
Real Gen. Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

PraNet[8] (No Aug) 1450 0 88.5 81.7 89.8 85.1 89.3 84.2 68.2 61.6 60.0 54.0 79.2 73.3
+ArSDM[6] 1450 1450 85.7 77.9 92.9 87.8 87.2 81.3 70.3 61.6 69.1 60.9 81.0 73.9
+SDM[28] 1450 1450 89.1 81.7 91.6 86.7 89.7 84.2 72.6 65.9 66.1 59.3 81.8 75.6
+SPADE[16] 1450 1450 86.0 79.2 91.7 87.2 90.8 85.4 72.1 65.5 63.6 57.1 80.8 74.9
+PolypDDPM[5] 1450 1450 88.9 82.5 91.1 85.9 90.6 85.4 74.2 67.0 68.6 61.8 82.7 76.5

+Ours(w/o Label)(1:1) 1450 1450 86.1 79.1 89.8 85.4 90.6 85.2 68.9 62.0 66.2 59.6 80.3 74.3

+Ours(1:3) 1450 1450 89.2 82.5 89.0 84.0 89.9 84.7 71.3 64.3 66.6 60.0 81.2 75.1
+Ours(3:1) 1450 1450 88.5 81.7 89.9 85.5 89.5 84.2 72.7 65.3 66.8 60.0 81.5 75.3
+Ours(1:1) 1450 1450 90.1 83.4 93.0 88.5 91.5 86.6 74.3 67.0 66.6 59.3 83.1 77.0
FCBFormer[20] (No Aug) 1450 0 89.2 82.5 90.6 85.8 88.7 82.9 79.3 70.8 72.6 64.6 84.1 77.3
+ArSDM[6] 1450 1450 87.9 79.9 92.1 87.1 91.8 86.6 77.4 69.3 74.8 65.4 84.8 77.7
+SDM[28] 1450 1450 86.7 79.5 90.8 85.9 91.3 86.2 77.8 70.1 71.4 64.4 83.6 77.2
+SPADE[16] 1450 1450 88.2 81.0 88.5 83.7 90.9 85.1 75.5 68.0 74.6 67.6 83.5 77.1
+PolypDDPM[5] 1450 1450 88.7 81.4 89.0 84.1 90.5 85.0 80.2 72.4 74.1 66.4 84.5 77.9

+Ours(w/o Label)(1:1) 1450 1450 86.6 79.8 90.8 85.9 91.2 85.8 74.6 67.3 69.6 62.5 82.6 76.2

+Ours(1:3) 1450 1450 89.7 82.9 88.2 82.5 89.9 84.3 74.9 67.0 72.2 63.8 83.0 76.1
+Ours(3:1) 1450 1450 86.4 79.3 92.2 87.4 90.9 85.4 79.5 71.2 74.5 66.9 84.7 78.0
+Ours(1:1) 1450 1450 90.6 84.0 93.6 88.7 91.1 86.0 80.9 73.3 72.8 65.5 85.8 79.5

tio, U-Net++ at 3:1, and FPN at 1:3, the average performance across all models
indicates that 1:1 is the most generalizable ratio.

Additionally, Table 2 presents the evaluation results of the same segmentation
model across multiple test datasets before and after augmentation. For PraNet,
the Dice score averaged over all test datasets improved from 79.2% to 83.1% after
augmentation with the proposed model at a 1:1 interpolation ratio, achieving
SOTA performance. Similarly, for FCBFormer, the score increased from 84.1%
to 85.8% under the same conditions, also setting a new SOTA performance.

Although ArSDM recorded the highest performance gain on the ETIS dataset
for PraNet and on the Kvasir and ETIS datasets for FCBFormer, the proposed
model with a 1:1 interpolation ratio consistently demonstrated the highest im-
provement, averaged over all test datasets, and outperformed other methods on
the remaining test datasets. This confirms that augmentation with the 1:1 ratio
of the proposed model provides the most robust generalization capability for seg-
mentation models, as it offers a balanced interpolation between different data,
unlike 1:3 or 3:1, which are more biased toward one mask.

Ablation Study The qualitative results in Fig. 3(b) show that w/o the back-
ground semantic label, interpolation does not occur in the background region,
meaning the model generates only from the mask-conditioned estimated distribu-
tion without incorporating background variations. Similarly, Tables 1 and 2 con-
firm that even with 1:1 interpolation, which gained the highest performance with
SIDM, performance improvement is minimal in w/o background semantic label.
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This highlights that mask interpolation alone is insufficient; both masks and
images must capture intermediate perspectives for better performance. These
results validate the effectiveness of the proposed background semantic label in
enhancing segmentation performance.

4 Conclusion

This study proposed SIDM, which interpolates masks and background seman-
tic labels to generate interpolated colonoscopy mask-image pairs. Background
semantic labels enable effective image interpolation and lead to improved gener-
alization of downstream models. Experimental results showed that a 1:1 inter-
polation ratio consistently achieved the most improvement in segmentation per-
formance through generative augmentation across multiple models and datasets.
Overall, SIDM demonstrates strong potential as a generative augmentation method
to improve the robustness and generalization of segmentation models in colonoscopy
analysis.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vi-
lariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Val-
idation vs. saliency maps from physicians. Computerized medical imaging and
graphics 43, 99–111 (2015)

2. Bo, D., Wenhai, W., Deng-Ping, F., Jinpeng, L., Huazhu, F., Ling, S.: Polyp-pvt:
Polyp segmentation with pyramidvision transformers (2023)

3. Chen, Y., Yang, X.H., Wei, Z., Heidari, A.A., Zheng, N., Li, Z., Chen, H., Hu, H.,
Zhou, Q., Guan, Q.: Generative adversarial networks in medical image augmenta-
tion: a review. Computers in Biology and Medicine 144, 105382 (2022)

4. Dayarathna, S., Islam, K.T., Uribe, S., Yang, G., Hayat, M., Chen, Z.: Deep learn-
ing based synthesis of MRI, CT and PET: Review and analysis. Medical Image
Analysis p. 103046 (2023)

5. Dorjsembe, Z., Pao, H.K., Xiao, F.: Polyp-ddpm: Diffusion-based semantic polyp
synthesis for enhanced segmentation. In: 2024 46th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 1–7
(2024)

6. Du, Y., Jiang, Y., Tan, S., Wu, X., Dou, Q., Li, Z., Li, G., Wan, X.: ArSDM:
colonoscopy images synthesis with adaptive refinement semantic diffusion models.
In: International conference on medical image computing and computer-assisted
intervention. pp. 339–349. Springer (2023)

7. Edemekong, P.F., Annamaraju, P., Haydel, M.J.: Health Insurance Portability and
Accountability Act (2024)

8. Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: Par-
allel reverse attention network for polyp segmentation. In: International confer-
ence on medical image computing and computer-assisted intervention. pp. 263–273.
Springer (2020)



10 C. Heo and J. Jung

9. Garcea, F., Serra, A., Lamberti, F., Morra, L.: Data augmentation for medical
imaging: A systematic literature review. Computers in Biology and Medicine 152,
106391 (2023)

10. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

12. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598 (2022)

13. Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., De Lange, T., Johansen, D.,
Johansen, H.D.: Kvasir-seg: A segmented polyp dataset. In: MultiMedia modeling:
26th international conference, MMM 2020, Daejeon, South Korea, January 5–8,
2020, proceedings, part II 26. pp. 451–462. Springer (2020)

14. Kazerouni, A., Aghdam, E.K., Heidari, M., Azad, R., Fayyaz, M., Hacihaliloglu, I.,
Merhof, D.: Diffusion models in medical imaging: A comprehensive survey. Medical
Image Analysis 88, 102846 (2023)

15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017)

16. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with
spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 2337–2346 (2019)

17. Qadir, H.A., Balasingham, I., Shin, Y.: Simple U-net based synthetic polyp image
generation: Polyp to negative and negative to polyp. Biomedical Signal Processing
and Control 74, 103491 (2022)

18. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

19. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, Oc-
tober 5-9, 2015, proceedings, part III 18. pp. 234–241. Springer (2015)

20. Sanderson, E., Matuszewski, B.J.: Fcn-transformer feature fusion for polyp seg-
mentation. In: Annual Conference on Medical Image Understanding and Analysis.
pp. 892–907. Springer (2022)

21. Siegel, R.L., Giaquinto, A.N., Jemal, A.: Cancer statistics, 2024. CA: a cancer
journal for clinicians 74(1), 12–49 (2024)

22. Siegel, R.L., Miller, K.D., Goding Sauer, A., Fedewa, S.A., Butterly, L.F., Ander-
son, J.C., Cercek, A., Smith, R.A., Jemal, A.: Colorectal cancer statistics, 2020.
CA: a cancer journal for clinicians 70(3), 145–164 (2020)

23. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detec-
tion of polyps in wce images for early diagnosis of colorectal cancer. International
journal of computer assisted radiology and surgery 9, 283–293 (2014)

24. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy
videos using shape and context information. IEEE transactions on medical imaging
35(2), 630–644 (2015)

25. Thambawita, V., Salehi, P., Sheshkal, S.A., Hicks, S.A., Hammer, H.L., Parasa, S.,
Lange, T.d., Halvorsen, P., Riegler, M.A.: SinGAN-Seg: Synthetic training data
generation for medical image segmentation. PloS one 17(5), e0267976 (2022)



Semantic Interpolative Diffusion Model 11

26. Vázquez, D., Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., López, A.M.,
Romero, A., Drozdzal, M., Courville, A.: A benchmark for endoluminal scene
segmentation of colonoscopy images. Journal of healthcare engineering 2017(1),
4037190 (2017)

27. Voigt, P., Von dem Bussche, A.: The eu general data protection regulation (gdpr).
A Practical Guide, 1st Ed., Cham: Springer International Publishing 10(3152676),
10–5555 (2017)

28. Wang, W., Bao, J., Zhou, W., Chen, D., Chen, D., Yuan, L., Li, H.: Semantic
image synthesis via diffusion models. arXiv preprint arXiv:2207.00050 (2022)

29. Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network
for polyp segmentation. In: Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part I 24. pp. 699–708. Springer
(2021)

30. Wu, Z., Lv, F., Chen, C., Hao, A., Li, S.: Colorectal Polyp Segmentation in the
Deep Learning Era: A Comprehensive Survey. arXiv preprint arXiv:2401.11734
(2024)

31. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: A nested
U-Net architecture for medical image segmentation. In: Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: 4th In-
ternational Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS
2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20,
2018, Proceedings 4. pp. 3–11. Springer (2018)


	Semantic Interpolative Diffusion Model: Bridging the Interpolation to Masks and Colonoscopy Image Synthesis for Robust Generalization

