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Abstract. Real2Sim is becoming increasingly important with the rapid
development of surgical artificial intelligence (AI) and autonomy. In this
work, we propose a novel Real2Sim methodology, Instrument-Splatting,
that leverages 3D Gaussian Splatting to provide fully controllable 3D
reconstruction of surgical instruments from monocular surgical videos.
To maintain both high visual fidelity and manipulability, we introduce
a geometry pre-training to bind Gaussian point clouds on part mesh
with accurate geometric priors and define a forward kinematics to con-
trol the Gaussians as flexible as real instruments. Afterward, to han-
dle unposed videos, we design a novel instrument pose tracking method
leveraging semantics-embedded Gaussians to robustly refine per-frame
instrument poses and joint states in a render-and-compare manner, which
allows our instrument Gaussian to accurately learn textures and reach
photorealistic rendering. We validated our method on 2 publicly re-
leased surgical videos and 4 videos collected on ex vivo tissues and green
screens. Quantitative and qualitative evaluations demonstrate the effec-
tiveness and superiority of the proposed method. Our code is available
at https://github.com/jinlab-imvr/Instrument-Splatting.

Keywords: Texture Learning · Surgical Instrument · 3D Gaussian Splat-
ting · Controllable Gaussian Splatting.

1 Introduction

In robot-assisted laparoscopic surgery, computer vision-based surgical instru-
ment identification [2,6,7,22,29,27] is of fundamental significance in downstream
applications such as augmented reality and autonomous robotic surgery. While
deep learning-based methods demonstrated excellent performance in general
computer vision domains, adapting these methods to surgical instrument anal-
ysis remains challenging due to limited data and annotations.

For robotic surgery automation, existing public datasets either lack instru-
ment pose labels or only provide sole wrist part pose labels [24]. This limits
⋆ Equal contribution
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imitation learning-based methods where robots directly learn instrument mo-
tions from human expert surgical videos [10,19]. To address this issue, a feasible
solution is Sim2Real transfer learning, which leverages large amounts of trajecto-
ries and videos generated from the simulation environment [17]. Conventionally,
most studies [4] adopt CAD mesh models of instruments that exhibit visually
unrealistic appearances. This significant sim-to-real gap impairs the performance
of models trained on such data. Therefore, a highly realistic and controllable 3D
asset of surgical instruments is critical.

With the recent progress in 3D reconstruction, new 3D representations such
as Neural Radiance Field (NeRF) [16] and 3D Gaussian Splatting (GS) [9]
emerged, which serve as powerful tools that can provide reconstructions with
high visual fidelity. Driven by these advances, Zeng et al. [28] utilize 3D GS to
reconstruct surgical instruments for novel data synthesis assisting surgical instru-
ment detection. However, this method requires a customized system for data col-
lection and cannot dynamically model surgical instruments with joint changes,
which degrades the flexibility and controllability of the reconstructed 3D as-
set. Similarly, [20] produces instrument reconstruction using large reconstruction
model, but lacks controllability. Although previous methods [13,26,12,30,21,25]
for dynamic surgical scene reconstruction have demonstrated high visual fidelity
on deformable tissue reconstruction, they cannot provide controllable 3D GS
since the deformation fields are only conditioned on the timestamps in surgical
videos. In addition, the reconstruction quality of these methods is degraded with
large and complex instrument motions, which commonly occur in surgical sce-
narios. Meanwhile, there are emerging works that adopt GS to reconstruct the
general robotic arm [14,15] or articulated human body [11], these approaches as-
sume known (or well-estimated) poses and joint states of the articulated objects,
which is unpractical in robotic-surgery settings where the kinematics of surgical
instruments are unavailable/noisy [2].

Driven by these limitations, we propose Instrument-Splatting, a real-to-sim
framework which leverages real monocular surgical videos to create a surgical
instrument digital twin represented by controllable 3D GS that can be used
for photorealistic simulation. Given untextured instrument CAD models, our
pipeline starts with a geometry pretraining that effectively binds the GS to the
mesh models with accurate geometry. Next, we propose a novel pose estimation
and tracking strategy based on the pretrained GS to estimate the instrument
pose and joint states. To handle large inter-frame instrument motions, we first
introduce a correspondence matching module to guide the GS to move toward
the current frame pose, followed by a structural-prior-based loose regularization
to penalize singular pose estimations. Finally, we evaluate our framework on both
intraoperative videos selected from EndoVis2017&2018 and in-house dataset col-
lected using da Vinci robotic system. Experiments indicate the efficacy of our
approach, demonstrating superior pose estimation accuracy and visual fidelity.
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Fig. 1. Instrument-Splatting Pipeline. Fig. 2. Forward kinematics of the LND.

2 Method

Instrument-splatting aims to learn a Gaussian Splatting representation of artic-
ulated surgical instruments. The overview pipeline is shown in Fig. 1. During
training, we first estimate the instrument pose and joint state given an RGB im-
age and instrument CAD model. Then, images with corresponding poses are fed
into the texture learning module to optimize the instrument GS. After training,
users can input in-ranged instrument pose with joint variables and get the posed
mesh along with rendered photorealistic images. In the following, we present
the preliminary knowledge including the instrument forward kinematics and 3D
GS (Section 2.1), GS geometry pretraining (Section 2.2), instrument pose es-
timation & tracking (Section 2.3), and the final texture learning (Section 2.4).

2.1 Preliminary Knowledge

Forward Kinematics. In this study, we adopt the da Vinci EndoWrist Large
Needle Driver (LND) as an example surgical instrument. The CAD model of
this instrument is open source [8]. Note that the proposed method can be easily
adapted to other types of instruments, given their CAD models.

The definition of coordinate systems and forward kinematics diagram are
shown in Fig. 2. We regard shaft frame as the base frame and this frame definition
consists of two revolute joint variables θ1 and θ2, denoting the rotation of the axis
z1 and y2, and the gripper open angle θ3. Let q = {θ1, θ2, θ3} ∈ R3 represent
the instrument joint state. Given the translation d0 and d1 as 215.9 mm and 9
mm, the forward kinematics chains can be defined as sTw(θ1)

wTg(θ2)
gTl(θ3),

where aTb ∈ SE(3) denotes the rigid transformation from frame a to b, and s, w,
g and l denote the frames for shaft, wrist, gripper and left tool tips, respectively.
Of note, each of them has only one degree of freedom (DoF) controlled by θi ∈
q. Therefore, we can define a transformation from any joint frame j to the
shaft frame as sTj∈{w, g ,l} given corresponding joint states q. Next, with another
transformation from shaft to camera camTs, we define a transform function Tj(·)
to transform points xj ∈ R3 in joint frames j to the camera frame as:

Tj(xj ; q, ξ) =
camTs(ξ)

sTj(q) xj , (1)
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Fig. 3. Overview diagram of Instrument-Splatting methodology.

where we use ξ ∈ se(3) to parameterize camTs. With Eq. 1, we can define the
instrument pose in camera frame given specified (q, ξ).
3D Gaussian Splatting. 3D Gaussian Splatting (GS) [9] is a powerful 3D
representation that can reconstruct 3D scenes with a group of Gaussian points.
Each Gaussian point contains learnable attributes Θ = {µ ∈ R3, r ∈ R4, s ∈
R3, α ∈ R, sh ∈ R27} to define the position, rotation, scale, opacity and col-
ors. With camera parameters, α-blending [9] is performed to render the colored
images based on the attributes in 3D GS model.

2.2 Geometry Pretraining

To bind the GS points to each rigid part of the instrument and initialize them
with accurate geometric priors, we propose a geometry pretraining strategy, as
illustrated in Fig. 3 (a). Specifically, for each part, we densely sample points on
mesh surface by ray-tracing, which effectively avoids the sparse point distribu-
tion due to oversized triangles. Then, given the CAD model, we adopt Blender 3

to render the ground-truth silhouette maps from multiple viewpoints. Next, the
sampled GS points will be trained to learn the geometry information by mini-
mizing the L1 loss between the rendered opacity and the ground-truth silhou-
3 https://www.blender.org/
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ette. Afterward, part Gaussians are combined to generate semantic-embedded
instrument Gasussians where one semantic label (i.e., wrist, shaft, and gripper)
f ∈ {1, 2, 3} is added to Gaussian parameters Θ to identify the part the Gaussian
point belongs to. Therefore, the instrument GS can be controlled by updating µ
and r with Eq. 1 as:

µ′
j = Tj(µj ; q, ξ); r′j = Rj(rj ; q, ξ), (2)

where µ′
j and r′j respectively denote the updated positions and rotations for

Gaussian points in part j, Rj means the rotational component derived from
rigid-body transformation Tj .

2.3 Pose Estimation and Tracking

An accurate alignment between the rendered instrument and the reference im-
age is crucial for appearance learning. Therefore, we designe a pose estimation
and tracking module to estimate per-frame instrument pose and joint changes,
as illustrated in the Fig. 3 (b). Inspired by [2], the pose estimation adopts the
render-and-compare framework to align the rendered semantic silhouette with
the segmented instrument. For the render-and-compare method, a good pose
initialization is crucial. In the initial frame, we manually pick 2D-3D point cor-
respondences of logo landmarks in the wrist part and use the PnP to solve the
pose. Only wrist pose is needed for initialization; shaft and gripper poses are
fixed relative to it and only 6 3D-2D pairs on wrist are sufficient. We cast the
pose estimation task as an optimization problem that can be formulated as:

ξ̂, q̂ = argmin L(ξ, q) (3)

where the loss is L = Lmask + Ltip. The Lmask is L1 loss. To take advantage
of the surgical instrument geometry prior, we propose Ltip = Ldist + Lstruct to
enforce the tool tip alignment. Given the gripper mask, we use singular value
decomposition (SVD) to find the principal axis of the gripper regions, on which
the farthest pixel from the wrist part is regarded as the tool tip. We adopt a
distance loss Ldist = ReLU(d − r), where d is the Euclidean distance between
the rendered tool tip from instrument GS and the estimated tool tip position
from segmentation mask, and r is a threshold to determine if the tool tip is
aligned well. This loose regularization can alleviate falling into local minima
caused by incorrect tool tip detection. In addition, we design a structural loss
Lstruct = ReLU(−(θl + θr)) to constrain the left tip always on the left side of
the right tip. θl is the left gripper rotation angle, which is a positive value if it
rotates leftward and vice versa it is a negative value.

To track the instrument pose ξ and joint state q, simply taking the previous
frame pose as the initial value struggles to handle the case where the instrument
motion between two adjacent frames is large. To address this issue, we propose
a novel pose initialization method based on image matching and PnP for pose
tracking. We extract features in the wrist and then find the matching correspon-
dences [5] between two adjacent frames. Given the depth rendered from 3D GS,
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we can lift the 2D features to 3D. We approximate the frame t’s 3D features and
frame t+1’s 2D features into 2D-3D correspondences and then compute a rough
initial pose using a PnP solver for the next frame.

2.4 Texture Learning

After estimating and tracking the pose and joint state over the video, we can
control the instrument Gaussian points moving to the target pose in each frame,
as shown in Fig. 3 (c). To maintain the geometric details, we freeze µ in this
phase, and the other parameters {r, s, α, sh} are learnable during this section.
Here, we adopt the loss L = Lmask+Lcolor to learn the textures, where the Lmask

and Lcolor are the L1 loss of the semantic silhouette maps and RGB pixels of the
instrument, respectively. Lmask is used here to maintain the geometric structure
while learning appearances.

3 Experiments and Results

3.1 Datasets and Implementation Details

We establish a new benchmark for the evaluation of surgical instrument recon-
struction. It includes two widely used instrument segmentation datasets EndoVis
2017 [3] and 2018 [1]. We select 100 frames containing LND in both datasets.
Frames with motion artifacts are excluded to ensure data quality. We split each
video into seen and unseen views (7:1) for training and evaluation. Because of
the sparse instrument poses in the in-vivo datasets, we collect four videos with
backgrounds of ex vivo tissues and a green screen for fairer validation. Two tra-
jectories with tissue background are to mimic the surgical scenario. The other
two trajectories with green screen backgrounds are closer to the camera to cap-
ture more texture details. The data collection methodology follows SurgPose [23]
using a da Vinci IS1200 system with the da Vinci Research Kit (dVRK) [8].
Regarding annotation, we use SAM 2 [18] to segment the foreground surgical in-
strument at the part level and obtain corresponding semantic masks. This newly
established benchmark, based on our in-house data, will be publicly available.

In this work, we perform geometry pretraining, pose estimation, and texture
learning sequentially. We first train the part Gaussian for 10K iterations per part.
Then, we adopt 2K iterations to iteratively optimize the pose for each frame,
and an early-stop signal will be triggered once the loss remains stable for over
100 iterations. The texture learning lasts for 10K iterations for each video. Only
training requires manual initialization; In real inference, we have instrument
GS and input user-defined pose for controllable data generation. Therefore, we
estimate the instrument poses and use these poses as user input to control the
instrument GS for quantitative evaluation. All the experiments are based on the
PyTorch framework and conducted with a single NVIDIA RTX A5000 GPU.
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Table 1. Quantitative Results of the Key Components

Method Rendered Semantics Dice↑ Reconstruction Quality
Shaft Wrist Gripper PSNR↑ SSIM↑ LPIPS↓

w/o Ltip 94.625 83.94 63.165 21.77 91.85 0.091
w/o Reg 95.515 78.4 63.39 22.89 92.63 0.079
w/o GP - - - 14.6 89.54 0.16

Ours 96.83 86.65 73.32 23.84 93.10 0.071

3.2 Quantitative Evaluation of Key Components

First, we verify the effectiveness of the key components of Instrument-Splatting
on the EndoVis 2017 and 2018 datasets. As shown in Table 1, we quantify the
pose accuracy of our pose estimation and tracking module with 2D projection
error similar to [2]. Specifically, we adopt the difference (i.e., Dice score) between
rendered semantics maps from posed instrument Gaussians and the correspond-
ing segmentation maps to evaluate the pose accuracy. We test our method by
removing the Ltip and the loose regularization strategy, denoted as w/o Ltip and
w/o Reg, respectively. As shown in Table 1, both Ltip and the loose regulariza-
tion lead to significantly improved pose estimation accuracy, particularly for the
gripper. We also report the metrics of the reconstruction quality in Table 1,
where it is noticeable that an improved pose estimation can enhance the visual
fidelity. Table 1 indicates the importance of Geometry Pretraining (GP ), which
significantly boosts the reconstruction quality. As shown in Fig. 4, six exam-
ples are selected from EndoVis18 and in-house dataset for visualization, which
indicates that our method can robustly track the instrument pose.

Fig. 4. Visualization of the projected CAD mesh with the estimated poses and corre-
sponding original images.

3.3 Evaluation on Reconstruction Quality

In this work, we are targeting a novel setting that reconstructs articulated
surgical instruments with monocular videos and CAD models only. We com-
pare the reconstruction performance of our method with current state-of-the-
art reconstruction methods in the surgical domain: EndoGaussian [13] and De-
form3DGS [26]. Although both methods cannot provide controllable 3D assets,
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Fig. 5. Visualization of the Novel-view Rendering Results of Different Methods

they demonstrate high visual fidelity in the reconstruction of deformable tissues.
As shown in Table 2, we show the results of wrist&gripper, shaft, and the whole

Table 2. Quantitative evaluation of the reconstruction quality on EndoVis2017&2018
and In-House Dataset.

Dataset Method Wrist & Gripper Shaft Overall Instrument

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

EndoVis17&18
Deform3DGS 19.65 92.55 0.165 22.23 94.33 0.066 17.44 86.49 0.213
EndoGaussian 18.90 93.45 0.145 20.91 94.30 0.078 16.45 87.75 0.192

Ours 25.81 96.87 0.064 31.39 96.52 0.035 23.84 93.10 0.071

In-House
Deform3DGS 28.95 97.60 0.046 34.52 97.08 0.023 28.39 94.76 0.048
EndoGaussian 25.34 96.94 0.059 31.59 97.23 0.033 27.47 94.94 0.053

Ours 30.44 98.27 0.038 32.49 97.14 0.032 27.94 95.45 0.041

instrument separately. The metrics for the whole instrument are lower than the
other two since they are computed based on all the pixels, following [13]. We
visualize the rendered images of different methods in Fig. 5. Both EndoGaus-
sian and Deform3DGS fail to reconstruct instruments in real surgical videos
(EndoVis2017&2018) due to long-range motions and large time intervals. As a
comparison, benefiting from the pose estimation module, our method can effec-
tively capture the significant inter-frame pose change for real surgical videos,
leading to a largely improved accuracy. On in-house data with smoother and
slower motions, although Deform3DGS/EndoGaussian have comparable or even
higher PSNR scores, their reconstruction outputs suffer from significant artifacts
on wrist and gripper parts and are far from being photorealistic, as shown in
the visualization (Fig. 5). This can be explained by the motion patterns in some
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clips of our in-house data where the shaft part only undergoes limited trans-
lation, and Deform3DGS/EndoGaussian has a strong capability of capturing
the appearance of these regions. Also, Table 2 shows the two methods exhibit
an inferior reconstruction quality on wrist and gripper parts, which indicates
the existing methods on surgical scene reconstruction cannot handle articulated
instrument parts with high dexterity and complex motions.

4 Conclusion

In this paper, we propose Instrument-Splatting, a novel Real2Sim pipeline to re-
construct articulated robotic surgical instruments with high visual fidelity. With
only monocular videos and CAD models of the instruments, our Instrument-
Splatting can effectively track the per-frame instrument pose and learn the tex-
ture through RGB videos. Different from prior works in the surgical domain,
our instrument Gaussian is articulated and fully controllable, which allows for
manipulation as flexible as real instruments. We believe this digital twin of the
instrument can strongly benefit the community working on surgical AI or sur-
gical autonomy. The experimental results demonstrate the superior advances of
our proposed method.
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