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Abstract. Adapting vision transformer (ViT) foundation models with
parameter-efficient fine-tuning (PEFT) has become increasingly popular
in medical imaging, enabling efficient adaptation while updating only a
small subset of parameters. However, existing PEFT methods process
tokens independently, overlooking cross-token dependencies and limiting
their ability to capture global contextual information. To address these
challenges, we propose FreqFiT, a novel Frequency-based Fine-Tuning
module inserted between ViT blocks to enhance model adaptability.
FreqFiT is effective and seamlessly integrates with existing PEFT methods
to improve their performance. We evaluate FreqFiT across 2D and 3D
medical imaging datasets, such as PAPILA, HAM10000, ADNI-1.5T, and
COVID-CT-MD. It improves accuracy 9% and AUC 10%, surpassing
the original PEFT methods on both MedMAE and DINOv2 backbones.
Despite using only < 1.2% of full fine-tuning parameters, FreqFiT achieves
state-of-the-art medical imaging adaptation efficiently. The source code

is available here.
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1 Introduction

Deep learning has transformed medical image analysis, but training models from
scratch is challenging due to privacy constraints, dataset imbalances, and the
high cost of expert annotations [22, 4]. Foundation models (FMs), which leverage
large-scale pretraining followed by fine-tuning on domain-specific data, have
proven effective across various biomedical imaging modalities like ultrasound,
histopathology, and radiology [7, 16, 20, 14].

However, full fine-tuning of FMs requires significant computational resources
and large annotated datasets, which are often unavailable in medical domains.
To address these limitations, parameter-efficient fine-tuning (PEFT) methods,
which update only a fraction of model parameters, have gained attention for their
efficiency in domain adaptation tasks with minimal computational cost [6, 8, 3].
PEFT techniques have achieved comparable performance to full fine-tuning,
updating less than 1% of parameters, making them ideal for scenarios where full
fine-tuning is not feasible due to privacy concerns or limited resources [10, 1].
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Despite their efficiency, PEFT methods process tokens independently, ig-
noring crucial cross-token dependencies and limiting their ability to capture
global context. This limitation weakens their adaptability in medical imaging,
where understanding complex relationships across tokens is essential. Addressing
these challenges is key to enhancing model robustness and ensuring reliable,
generalizable performance across diverse medical scenarios.

To overcome this challenge, we propose FreqFiT, a frequency-based fine-tuning
module that enhances adaptability while remaining computationally efficient.
Integrated between ViT blocks, FreqFiT aggregates statistics across all the tokens
by leveraging the frequency domain to capture subtle patterns that spatial-domain
methods often miss. Its plug-and-play design ensures compatibility with existing
PEFT techniques like LoRA, delivering consistent performance improvements
across diverse medical imaging tasks without requiring architectural changes,
making it suitable for both research and clinical applications. We evaluate
FreqFiT across 2D and 3D medical imaging datasets. It surpasses the original
PEFT methods on both medical and natural imaging pre-trained backbones,
despite using only < 1.2% of full fine-tuning parameters. Our main contributions
are as follows:

1. We propose FreqFit, a simple and effective frequency-based fine-tuning module
that seamlessly integrates with existing PEFT methods to enhance model
adaptation.

2. We provide theoretical support for why FreqFit can capture image features
that existing PEFT methods cannot, such as information across all the tokens.

3. We provide empirical results on 2D and 3D medical imaging datasets on both
medical and natural imaging pre-trained foundation models.

2 Related Works

Parameter-Efficient Fine-Tuning (PEFT). PEFT methods reduce the cost of
adapting large-scale vision models. PEFT methods, such as LoRA [6], AdaLoRA
[24], BOFT [13], address this challenge by fine-tuning a small subset of model
parameters. LoRA introduces low-rank decomposition to reduce the parameter
overhead, while AdaLoRA dynamically adjusts the rank during training for
improved efficiency. BOFT focuses on block-oriented tuning to preserve spa-
tial hierarchies. Despite their effectiveness, these methods often overlook the
frequency-domain properties of medical images, potentially limiting their ability
to capture subtle anatomical variations. However, these spatial-domain methods
may overlook the information across tokens, restricting their ability to model
long-range interactions and capture subtle anatomical variations essential for
medical imaging.

PEFT in Medical Imaging. Fully fine-tuning foundation models for medi-
cal imaging is challenging due to modality variations and limited labeled data.
Recent works have explored PEFT to address these issues. [4] benchmarked 17
PEFT methods, showing up to 22% gains in low-data scenarios. [12] applied LoRA
to chest radiography, outperforming full fine-tuning in 13/18 tasks with <1%
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(a) Overview of FreqFiT (b) Difference between FreqFiT and LoRA

Fig. 1. (a) Overview of FreqFiT. (b) Methodology differences between FreqFiT, utilizing
Fast Fourier Transform (FFT), and LoRA. Given input tokens X € RT*W*P  while
LoRA operates on the channel dimension D in the spatial domain, FreqFiT, using FFT,
processes both the H x W and D in the frequency domain. This highlights how FreqFiT
and PEFT methods like LoRA complement each other. See Sec. 3 for details.

tunable parameters. [9] used PEFT methods such as LoRA to explore fairness in
medical applications. Other studies have applied PEFT to specialized tasks, such
as volumetric organ segmentation [19], multi-scanner PET reconstruction [10],
and organ segmentation across imaging modalities [2]. These studies underscore
PEFT’s effectiveness for medical imaging adaptation while minimizing computa-
tional overhead. However, these studies do not consider the fall short of PEFT
methods mentioned above.

FreqFiT distinguishes itself from prior approaches by uniquely integrating
PEFT with frequency-based adaptations, enabling robust medical imaging adap-
tation. Its O(1) parameter complexity ensures scalability to both 2D and 3D
inputs, all while preserving the integrity of the foundation model. This makes
FreqFiT particularly well-suited for scenarios where retraining the entire model
is not feasible.

3 FreqFit - Frequency Fine-tuning

Here, we formally introduce the frequency tuning method, called FreqFiT, as
illustrated in Fig. 1. FreqFiT integrates a frequency operator consisting of a filter
basis followed by a residual connection, between ViT blocks. Given an input token
X € REXWXD “we perform FFT along the spatial dimensions to transform the
input into X, as in Eq. 1. We modulate X, by multiplying it with the learnable
filter K € REXWXD which has the same dimensions as X,, as in Eq. 2. Finally,
we convert the modulated spectral features X back to the spatial domain using
the inverse FFT, as shown in Eq. 3, and add a residual connection from the
original input X. This process can be mathematically presented as follows:

X, = F(X) e CH*WxP (1)
X.=Ko X, (2)
X « FU(X.) (3)
X=X+a0X+p8 (4)
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where, F and F~1 are the fast Fourier transform (FFT) and its inverse. K €
REXWXD denotes a learnable filter, o and /3 are the scale and shift factors, and
©® is the Hadamard product.

How Does FreqFiT Improve Performance? The basic idea behind
frequency-based tuning FreqFiT is to learn the interactions among spatial lo-
cations in the frequency domain. We provide the theoretical foundation that
underscores the importance of incorporating FreqFiT into the existing fine-tuning
paradigm. See also Fig. 1 for better understanding.

Proposition 1. FregFiT with O(1) parameters can create a feature transforma-
tion that spatial-domain parameter-efficient fine-tuning methods cannot replicate.

Proof. Here, we employ LoRA to ease the proof as this can be generalized to
other PEFT methods. Given the input tokens X € REXWXD where each token
is a D-dimensional vector spread across an H x W spatial grid. The LoRA
transformation and FreqFiT are as:

Xiora = WoX + BAX (5)
XFrequT:X+‘/—:71(‘F(X)®K) (6)

where, K € CHEXWXD and B € RP*" and A € R™*P,r « D are the low-rank
matrices. For simplicity, we do not present o and § parameters for FreqFiT.

For FreqFiT to replicate LoRA transformation, and vice versa, there must
exist a filter K such that:

FYF(X)oK) =BAX (7)

However, this is not generally possible because of the following reasons: (i) Filter
K and BA operate in different domains, i.e., frequency and spatial domains,
respectively. (i1) K is a 3D filter that modulates information in both the tokens
2-dimensional H x W and the channel dimension D. (i) BA, in Eq. 5 is a
token-specific modification, where the D-dimensional representation of each token
is updated. This modification captures relationships within and across channels,
such as correlations or dependencies among the features in D.

As a result, FreqFiT introduces implicit cross-token interaction via aggregated
statistics across all the tokens. Whereas, LoRA operates locally, emphasizing
token-specific updates in the channel dimension.

While LoRA transformation is not full rank, FreqFiT transformation

is full rank. The Fourier transform of X € RE*WXD ig given by:
X =Up XU // Fourier transform (8)
V=FX=F (UHXUVTV) // Multiply with F (9)
Y = U Y (U // Inverse Fourter transform (10)

where Uy € CT*H and Uy € CW>*W are the unitary Fourier transform matrix
of row and column grid. The UZ and U{L are the conjugate transpose of Uy
and Uy, respectively, i.e., UII}[UH =1 and UVII{,UW = I. Thus, if the input X is
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full-rank and F is a full-rank diagonal matrix (no zero entries for all frequency
components), since U is unitary, the rank of X is preserved in the frequency
domain, then the result X must be full-rank.

FreqFit has O(1) parameter complexity, as the frequency modulation
filter F' can be parameterized efliciently, focusing only on essential frequency
components, regardless the input dimensions of X.

Proposition 2. Combining FreqFiT with spatial-domain PEFT methods can
create a feature transformation that cannot be achieved by FreqFiT or any spatial-
domain PEFT method alone.

Proof. Let feomb(X) = frreqriT(fLora (X)), where frreqriT and fLora, as defined
in Proposition 1. Assume, for contradiction, that f € frora U frreqriT. If feoms €

fLoRAa then
fcomb(X) =WoX + B'A'X (]_]_)

for some low-rank A’, B’. However, this form cannot capture the non-local,
frequency-aware masking introduced by frreqriT, Which operates globally across
spatial tokens—beyond the representational scope of spatial PEFT. On the other
handv if fcomb € fFrequT7 then

Jeomn(X) =X + FH(F(X) 0 K') (12)

for some K’ € CH*WXD Yet, this form cannot represent the intermediate channel-
wise transformation ABX applied before the FFT, as the Fourier transform
is linear. Hence, no feomp € frregFiT OF fLora can reproduce the composite
transformation frora and frora, and therefore:

fcomb ¢ fLoRA U fFrchiT~ (13)

Proposition 2 provides a compelling rationale for combining two comple-
mentary approaches: FreqFiT and traditional PEFT methods like LoRA. By
leveraging their distinct strengths, this combination enables a significantly more
effective fine-tuning strategy. Our experimental results across diverse datasets
strongly validate this theory, demonstrating substantial improvements over using
either method alone.

4 Experiments

We evaluate our method using foundation models pre-trained on natural or
medical image datasets, encompassing diverse learning paradigms, including
DINOv2 [17] for self-supervised learning on natural images and MedMAE [23]
for masked autoencoding pretraining on medical images.

To assess FreqFiT’s versatility, we integrate it with various state-of-the-art
PEFT methods—LoRA [6], AdaLoRA [24], FourierFT [5], and BOFT [13]. These
methods serve as baselines to evaluate how FreqFiT enhances parameter-efficient
adaptation across different pre-training strategies and datasets. All experiments



6 Son T. Ly and Hien V. Nguyen

Table 1. Comparison between the state-of-the-arts PEFT methods and their FreqFiT-
enhanced counterpart. The gray-shaded Bold indicates that the performances in both
ACC and AUC are equal to or better than the original method.

Tuned Params MedMAE DINOv2
M % PAPILA |HAM10000|ADNI-1.5T|COVID-CT-MD| PAPILA |HAM10000|ADNI-1.5T|COVID-CT-MD

to Full ]JACC AUC|ACC AUC|ACC AUC|ACC AUC |ACC AUC|ACC AUC|ACC AUC|ACC AUC
LoRA 0.44| 0.5% |78.6 0.78|87.7 0.88 |76.0 0.81 |73.5 0.60 91.1 0.93]86.1 0.89 |75.0 0.83 |93.5 0.97
FreqFit-LoRA 0.88| 1.0% |84.0 0.88|87.1 0.88|81.7 0.85 |78.2 0.82 94.6 0.97|86.8 0.91 |81.7 0.85|94.1 0.98
AdaLoRA 0.66 | 0.8% [59.0 0.64|84.2 0.86 |49.0 0.61 |78.2 0.82 83.9 0.91]82.9 0.88 |75.0 0.78 |85.3 0.91
FreqFit-AdaLoRA | 1.11 | 1.2% |76.8 0.80(85.5 0.88 (78.8 0.77 |78.8 0.82 89.3 0.92|88.1 0.90|75.0 0.82|87.6 0.92
BOFT 0.11| 0.13% |80.4 0.81|82.2 0.87 |72.1 0.76 | 77.6 0.84 89.3 0.93]85.5 0.88|73.1 0.79 |93.5 0.97
FreqFit-BOFT 0.55| 0.6% |87.5 0.84|83.9 0.87|80.9 0.80 [80.0 0.83 93.0 0.96|88.7 0.91 |80.8 0.86 |97.6 0.99
FourierF T 0.025 0.03% |76.8 0.70|84.6 0.84 |60.6 0.70 |75.3 0.69 89.3 0.93]85.5 0.88 |74.0 0.80 | 73.5 0.70
FregFit-FourierFT| 0.47 | 0.5% |85.1 0.82|84.2 0.87 |78.8 0.85 |79.4 0.83 93.0 0.9688.2 0.91|75.0 0.78 [89.0 0.94

use default hyperparameters, including low-rank configurations, from Hugging
Face’s PEFT library [15], applied to all linear layers.

For downstream tasks, we conduct binary classification experiments on diverse
2D and 3D medical imaging datasets: PAPILA [11] for papillary thyroid carcinoma,
HAM10000 [21] for dermatoscopic lesion analysis, COVID-CT-MD [1] for COVID-
19 diagnosis from CT scans, and ADNI-1.5T [18] for Alzheimer’s detection using
MRI. Data splits and preprocessing follow [9, 4].

5 Main Resutls

Table 1 presents fine-tuning results on various imaging datasets, showing that
integrating FreqFiT-enhanced methods consistently improves accuracy (ACC) and
area under the curve (AUC) across various tasks and foundation models. FreqFiT-
enhanced methods outperform their baselines across all datasets, demonstrating
its effectiveness in handling the complexities of medical imaging data.

For the MedMAE [23], FreqFiT-BOFT achieves top performance on PAPILA
(ACC: 87.5%, AUC: 0.84) and COVID-CT-MD (ACC: 80.0%, AUC: 0.83), surpass-
ing the original BOFT by 7.1% and 2.4% in accuracy, respectively. FreqFiT-LoRA
also improves on ADNI-1.5T, raising accuracy from 76.0% to 81.7% and AUC
from 0.81 to 0.85, demonstrating its ability to capture subtle clinical features.

For the DINOv2 [17], FreqFiT methods show strong improvements across
tasks. FreqFiT-LoRA achieves 94.6% accuracy and 0.97 AUC on PAPILA, sur-
passing LoRA by 3.5% and 0.04, respectively. FreqFiT-BOFT reaches the highest
performance on COVID-CT-MD (ACC: 97.6%, AUC: 0.99), highlighting the ben-
efits of frequency-domain adaptation in volumetric data. Compared to stronger
baselines like FourierFT, FreqFiT variants consistently outperform, with FreqFiT-
FourierFT gaining 5.8% on PAPILA and 5.9% on COVID-CT-MD.

Although FreqFiT introduces additional parameters compared to original
PEFT methods, the total parameter count remains small relative to full tuning.
FreqFiT-based methods tune less than 1.2% of the full tuning (~ 85M), showing
that FreqFiT remains parameter-efficient while enhancing performance.
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Fig. 2. FreqFit and Scale-Shift-based methods, a simple linear transformation, consis-
tently perform better than the original PEFT methods.

Overall, these results highlight FreqFiT’s robustness and versatility across
different PEFT strategies, backbone models, and imaging modalities, achieving
consistent gains with minimal computational overhead.

6 Ablations

Frequency-based Tuning is better than Linear Transformation. We
compare FreqFiT with Scaling-Shifting-enhanced and original PEFT methods on
medical imaging datasets. Scaling-Shifting applies a linear transformation with
learnable scaling and shifting factors between ViT blocks, adjusting the amplitude
and mean of input features. As shown in Fig. 2, FreqFiT outperforms Scaling-
Shifting, achieving an average gain of 1.3% in accuracy (ACC) and 0.04 in AUC
across all methods. This improvement highlights FreqFit’s superior ability to align
input features with the frozen model parameters, especially when dealing with the
diverse anatomical structures and imaging modalities inherent in medical datasets.
Unlike Scaling-Shifting, which adjusts features globally, FreqFit’s frequency-based
approach captures a broad spectrum of spatial dependencies by modulating both
high- and low-frequency components. This enables the model to better represent
long-range structural patterns and fine-grained pathological details—crucial for
tasks like tumor boundary delineation in PAPILA or subtle lesion detection in
HAM10000.

While Scaling-Shifting approach offers computational efficiency and effectively
addresses moderate distribution shifts, its global feature adjustment limits its
capacity to capture intricate spatial dependencies and frequency variations. As
observed in COVID-CT-MD and ADNI-1.5T, SS-based methods underperform
compared to their FreqFit-enhanced counterparts, particularly in scenarios requir-
ing the capture of subtle structural abnormalities. While Scaling-Shifting provides
modest gains in PEFT, especially in domains with minimal domain gaps, it lacks
the nuanced adaptability that FreqFit offers. The consistent improvements with
FreqFit, even in challenging 3D medical imaging tasks, underscore the benefits of
frequency-domain transformations for robust and adaptable parameter-efficient
fine-tuning.
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Fig. 3. Comparison FreqFiT, Scale-Shift-based, and PEFT methods on few-shot settings.
The size of regions around markers are proportional to the corresponding AUC scores.

It’s also important to note that while Scaling-Shifting still lags behind FreqFiT,
it improves performance over original PEFT methods, highlighting that existing
PEFT techniques could overlook features’ distribution alignment between frozen
ViT blocks, leading to suboptimal feature alignment.

Few-shot Setting. In Fig. 3, the results on the HAM10000 dataset highlight
the effectiveness of FreqFit-enhanced PEFT methods across different few-shot
learning settings. In the 1-shot scenario, FreqFit consistently outperforms both
original PEFT and scale-shift PEFT (SS-PEFT) variants. Notably, FreqFit-LoRA
achieves the highest accuracy (73.1%) and a strong AUC (0.63), improving upon
both LoRA (68.8%, 0.57 AUC) and SS-LoRA (66.8%, 0.59 AUC). Similarly,
FreqFit-AdaLLoRA and FreqFit-BOFT demonstrate superior performance com-
pared to their respective baselines, indicating that frequency modulation enhances
adaptation even in extreme data scarcity.

In the 5-shot setting, FreqFit continues to show significant improvements.
FreqFit-AdaLoRA achieves the best overall performance with 77.4% accuracy and
0.78 AUC, surpassing AdaLoRA (68.6%, 0.72 AUC) and SS-AdaLoRA (72.6%,
0.71 AUC). Likewise, FreqFit-LoRA (72.6%, 0.79 AUC) and FreqFit-BOFT
(73.0%, 0.71 AUC) outperform their respective baselines, demonstrating the
robustness of frequency-based adaptations.

In the 10-shot setting, FreqFit methods maintain competitive performance.
While the gap between methods narrows as more labeled data becomes available,
FreqFit-AdaLoRA still achieves the highest accuracy (78.6%) among all ap-
proaches. Meanwhile, FreqFit-LoRA (72.8%) and FreqFit-BOFT (75.8%) sustain
their improvements over standard PEFTs. The results suggest that FreqFit en-
hances parameter-efficient fine-tuning by preserving essential information across
tokens while mitigating the instability caused by frozen model blocks.

Overall, these results validate FreqFit as an effective enhancement for PEFT
in medical imaging, particularly in low-data regimes where traditional PEFT
methods struggle with token interactions.

7 Limitations

Despite its effectiveness, FreqFiT requires slightly more parameters than standard
PEFT methods. While it only uses ~ 1% fraction of full fine-tuning parameters,
the additional overhead may limit its deployment in resource-restricted settings.
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Future work could explore further parameter efficiency optimizations to balance
performance gains with computational cost.

8 Conclusion

In this study, we introduce FreqFiT, a novel frequency-tuning module that en-
hances PEFT methods by modifying ViT frequencies, addressing overlooked
tokens information. Easily integrated into existing fine-tuning approaches, Freq-
FiT operates in the frequency domain, enabling models to capture subtle patterns
more effectively. Extensive experiments across 2D and 3D medical imaging tasks
demonstrate its effectiveness, consistently improving performances. Despite mini-
mal parameter overhead, FreqFiT achieves state-of-the-art adaptation, surpassing
standard PEFT methods in medical imaging.
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