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Abstract. Scoring systems are widely adopted in medical applications
for their inherent simplicity and transparency, particularly for classifica-
tion tasks involving tabular data. In this work, we introduce RegScore,
a novel, sparse, and interpretable scoring system specifically designed
for regression tasks. Unlike conventional scoring systems constrained to
integer-valued coefficients, RegScore leverages beam search and k-sparse
ridge regression to relax these restrictions, thus enhancing predictive
performance. We extend RegScore to bimodal deep learning by inte-
grating tabular data with medical images. We utilize the classification
token from the TIP (Tabular Image Pretraining) transformer to generate
Personalized Linear Regression parameters and a Personalized RegScore,
enabling individualized scoring. We demonstrate the effectiveness of
RegScore by estimating mean Pulmonary Artery Pressure using tabular
data and further refine these estimates by incorporating cardiac MRI
images. Experimental results show that RegScore and its personalized
bimodal extensions achieve performance comparable to, or better than,
state-of-the-art black-box models. Our method provides a transparent and
interpretable approach for regression tasks in clinical settings, promoting
more informed and trustworthy decision-making. We provide our code at
https://github.com/SanoScience/RegScore.
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1 Introduction

Scoring systems are sparse linear models that require the addition of points
conditioned on binary features that sum to the final score. For example, in the
CHADS; [7] system, if the age of the patient is higher or equal 75 (age > 75
binary feature), 1 point is added to the final score of stroke risk. Based on the
sum of points, a probability can be derived from the pre-computed table or a non-
linear function. There are a large number of scoring systems in healthcare, such
as CHADS; or NEWS, [21] as clinicians tend to favor methods that are easier to
use and interpret, even if they are less accurate than deep learning models. The
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most popular approaches for data-driven scoring systems creation involve training
penalized logistic regression (LR). Then, the coeflicients are rounded or have +1
assigned depending on their sign as the Unit method in [1]. Ustun and Rudin
introduced the Risk Supersparse Linear Integer Model (RiskSLIM) [23] whose
discrete coefficients are found with Integer Programming. Based on this approach,
Multiclass Interpretable Scoring Systems (MISS) expanded scoring system use
beyond two classes [10]. Liu et al. [17] presented FasterRisk, which finds scoring
systems in a three-step process of solving sparse logistic regression via beam
search (BS), finding a pool of nearly optimal solutions with continuous coefficients
and rounding them. Although interpretable, traditional scoring systems may fall
short when diagnosing conditions defined by thresholding a continuous variable.
For example, Pulmonary Hypertension (PH) is diagnosed when the invasively
measured mean Pulmonary Artery Pressure (mPAP) exceeds 20 mmHg [13].
Instead of assigning arbitrary points, a more informative approach would be to
develop scoring systems that reflect the relationship between features and mPAP.

Furthermore, diagnostics in modern healthcare involve collecting multimodal
data in the form of images and tabular records. This aspect led to the development
of methods that allow the injection of clinical data into vision deep learning models.
Modules like Dynamic Affine Feature Map Transform (DAFT) [20], TabAttention
[9] or TabMixer [8] enhance the interaction between imaging and tabular data
via affine transformations, attention learning conditioned on tabular data or
multilayer perceptron-based mixing of multimodal features. Such methods have
surpassed naive approaches for merging both modalities based on concatenation
[22], maximum value selection [24] or multiplication [5]. Tabular data can also
improve unimodal models when used during self-supervised learning (SSL) [11] or
for guiding image feature learning [15]. The SSL on both modalities and bimodal
inference in the Tabular Image Pretraining (TIP) achieves state-of-the-art results
for imaging and tabular data [4]. Unfortunately, all these approaches are weakly
explainable and do not take into account the interpretability of tabular features.
Even though one can analyze feature attribution [11] or attention scores of the
classification (CLS) token - serving as a learned representation for classification
in transformers [4] - these methods offer only limited interpretability.

In this paper, we present RegScore, a sparse, interpretable, transparent
scoring system for regression tasks. By relaxing integer-only constraints of points
in scoring systems and changing the task from classification to regression, we
show two ways to create RegScore. Firstly, we find the solution to a sparse ridge
regression problem on binary features based on BS [17]. The second approach is
to solve it with OKRidge (OKR) [16]. Further, we leverage the interpretability
of tabular data and show how to produce interpretable predictions for bimodal
deep learning models. Given the CLS token from the TIP transformer, instead of
computing the final output, we generate weights for linear regression computed
with tabular features. We dub this approach Personalized Linear Regression (PLR)
since separate linear operations are performed for each of the samples. Similarly,
we dynamically mask binary features to produce a Personalized RegScore (PRS)
from the CLS token. Our contributions are as follows: (1) we introduce RegScore, a
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Fig.1: Given the tabular (X*) dataset, we produce the discretized set (X*) to
create RegScore with beam search or OKRidge (a). We further leverage the TIP
method [4] with imaging data (X?) (b) to compute CLS token for every sample
and create interpretable regression predictions with PLR (c) and PRS (d).

scoring system for regression tasks, (2) we present PLR and PRS, two approaches
for generating interpretable predictions from bimodal deep learning architecture,
which while being more interpretable are competitive to other solutions, and
(3) we apply the presented methods to the task of PH diagnosis and show that
RegScore can outperform classification scoring systems by a significant margin.

2 Method

In this section, we present two methods for generating RegScore from tabular
data, followed by a description of how the CLS token from the TIP transformer
is used to derive PLR and PRS. An overview of our approach is shown in Fig. 1.

Let (X! = [2t,...,2%] € RPN X1 ¢ RPXHXWX3) he a dataset consisting
of tabular-image pairs, where P is the number of samples and NV is the number
of features. We construct a binarized set (X* = [#%,...,2%] € {0,1}7*P) by
one-hot encoding N,,; categorical features and discretizing N — N.,¢ continuous
features using a discretization function £. Various implementations of £ exist; in
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this work, we consider the Minimum Description Length Principle (MDLP) [6]
and tertile binning. Given Xt we generate RegScore.

RegScore. The objective of RegScore is to minimize the mean squared loss
under a sparsity constraint, resulting in a sparse ridge regression problem:

min [y — X3 + A2||B]|3  subject to B0 < &, (1)

Here $ is the vector of weights (scores) assigned to each binary feature, Ay is the
{5 regularization rate, and k is the model size (bias is omitted for clarity). The
sparsity constraint renders the problem NP-hard. We find two methods to train
RegScore. First, by relaxing integer constraints on weights in scoring systems, we
adapt the BS step from FasterRisk [17] for regression. BS assumes that a model
of size k inherently contains one of the best models of size k — 1. It iteratively
expands the solution by optimizing each non-zero weight and selecting the B best
candidates. In the second step, BS fine-tunes non-zero weights and retains top-B
solutions, ultimately returning the best model. The second approach leverages
the OKRidge algorithm [16], which is based on the Branch-and-Bound (BnB)
algorithm. First, a lower bound is computed for a node in the BnB tree. If this
bound is lower than the current solution, a new solution is found and used to
generate new nodes in the tree. Both methods yield highly effective RegScore.
Tabular Image Pretraining. To fully leverage imaging and tabular data, we
employ TIP, which integrates a convolutional image encoder ¢?, a transformer-
based tabular encoder ¢!, and a multimodal interaction module ¢. Given an image
representation / € RE'WIXE from ¢ and tabular representation T € RIN+D*E
from ¢* where E denotes the embedding dimension and N + 1 includes the CLS
token, 1) generates a multimodal representation F' € RN+UXE_ TIP employs
three SSL losses: contrastive learning between I and T, image-tabular matching
and tabular data reconstruction from F'. For further implementation details refer
to [4]. Following SSL, we utilize the CLS token during fine-tuning to derive PLR
and PRS.

Personalized Linear Regression (PLR). In standard transformer architec-
tures, predictions are typically generated by applying a linear layer to the CLS
token, mapping it to the number of output classes (1 in the case of regression).
Here, we instead transform the CLS token using a linear layer into a vector of
size N + 1, comprising N personalized weights (3, ,; for each tabular feature m;i
per sample p) and a bias term (8, ). Given these personalized regression weights,
the prediction ¢, is computed using the linear regression equation:

N
Yp = Bpo + ngm X Bp.i (2)

i=1

Personalized RegScore (PRS). PRS follows a similar approach but incorpo-
rates binarized tabular features as an additional input. We introduce a gating
mechanism that retains only the top k binary features by setting the rest to
zero. This is achieved by computing the mean embeddings of each feature and
applying a linear transformation (W,) to obtain scores S. k features with the
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Table 1: Results of PH classification with scoring systems of size k£ and mPAP
estimation using RegScore. We bold the best and underline second-best results.
1 indicates p-value <0.05 for statistically significant difference from RegScore.

Method k MAE | Rt Accuracy 1 F1 71
Unit [1] - - - 66.05 + 21.5 72.42 +23.0
MISS [10] 5 - - 84.52 + 0.67 90.88 4 0.40
RiskSLIM f[23] 5 - - 85.21 £+ 0.62 91.31 £0.47
FasterRisk 7[17] 5 - - 85.36 +1.03 91.40 £+ 0.63
FasterRisk 1[17] 50 - - 86.51 +1.16 92.04 £0.71
RegScoregs 5 8.53 £0.15 63.39 £ 1.44 86.59 £ 0.27 92.43 £0.15
RegScoreps 50 7.754+0.13 69.90 + 1.02 88.05 £+ 0.57 93.24 +£0.31
RegScoreoxr 5  8.69£0.30 61.73 £2.03 86.74 +0.79 92.54 £+ 0.46
RegScoreoxr 50 7.73+0.13 70.06+0.96 88.12+0.72 93.28 +0.38

highest scores pass through the gating mechanism. During training, we use a soft
gating function K, (a sigmoid function with steepness controlled by %), while
during inference, we apply a hard gating function Kj:

E
1
S = Wg <E ZF7,> y Tk = topk(S)mirnKh - ]I(S Z Tk)7Ks =0

=1

3 Experiments and results

In what follows, we describe the dataset used for mPAP estimation and PH
classification. We compare the performance of RegScore against other methods
for constructing classification scoring systems. Additionally, we benchmark PLR
and PRS against various tabular and/or image-based approaches.

Dataset. This study was approved by the Ethics Committee. The dataset
originates from the ASPIRE Registry (Assessing the Severity of Pulmonary
Hypertension In a Pulmonary Hypertension REferral Centre) [14] and comprises
2051 invasively measured mPAP values matched with Cardiac MRI (CMR) videos
of one cardiac cycle (short-axis plane). It includes data from 1918 patients (1171
females, 747 males, aged 64+ 14 years) with some undergoing repeated procedures
over time. We select demographic features and MRI-derived measurements with
fewer than 500 missing values. We impute missing values using the mean for
continuous and the mode for categorical features. The CMRs were acquired using
devices from multiple vendors including Siemens, Philips and GE. Instead of
using full videos, we extract systolic, diastolic and in-between frames as 3-channel
images [11,4].

Implementation details. We split the dataset into the training set (1790
samples) used for a 5-fold cross-validation and test set (261 samples), ensuring
that each patient’s data appears in only one split. The splits are stratified based on
mPAP (divided into four bins) to maintain similar distributions. For the scoring
systems’ classification task, cases with mPAP exceeding 25 mmHg are considered
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Table 2: Results of mPAP regression and PH classification using imaging (I)
and/or tabular (T) methods with SSL and supervised learning (FT). t indicates
p-value <0.05 between the performance of PLR, PRS and other methods.

Method SSL FT  MAE | R 1T Accuracy 1 F11
Machine Learning methods
DT 1[19] - T 1097+0.29 51.434+2.80 81.23+1.46 88.74+ 0.96
XGB 1[2] - T 8.05+0.07 69.27+£1.23 87.36 £0.61 92.77 +£0.35
LR t[19] - T 776+0.06 69.66+0.79 87.89+0.34 93.19+0.18
GBR t[19] - T 7.67+£0.06 70.80£0.63 87.89+0.21 93.13£0.11
RF t[19] - T 761+£0.04 70.42+£0.68 87.13+0.88 92.69 +0.53
Deep Learning methods

ResNet-50 f[12] - I 824+0.28 68.25+274 84.83+1.62 91.55+0.67
SimCLR {[3] I 791+£0.30 72.254+212 85.59+0.75 91.76 +0.33
DAFT {[20] - IT 7744+030 71.24+£1.02 88.51+1.27 93.29 +0.80
TabMixerzp 18] - IT 769+0.14 72.084+0.44 88.35+0.79 93.23 +0.41
VIME 7[25] T T 7.53+£0.09 73.22+£0.88 88.97+1.25 93.56+0.73
TabAttentionap 7[9] - IT 7.474+0.11 72.83+1.14 88.89+0.72 93.59 £+ 0.31
MMCL [11] IT T 745+0.37 75.04+1.60 87.89+0.44 92.93+0.25
TIP [4] IT IT 6.884+0.25 77.30+1.46 88.58 +0.63 93.39 +0.35
PLR IT IT 7.144£0.14 75.07+£0.87 88.66+1.29 93.46 £0.73
PRSs IT IT 7.194+0.16 74.85+1.26 89.43 +1.00 93.84 £ 0.60

positive (1678 positive vs. 373 negative cases). For other methods trained on
regression task, mPAP serves as ground truth and classification is achieved
by thresholding the predicted value. We use Mean Absolute Error (MAE) and
Pearson’s correlation coefficient (R) as regression metrics while accuracy and F1
as classification metrics. Mean and standard deviation are reported across the test
set over five folds. We standardize numerical features, retaining only those with
statistical significance based on f-regression [19]. We present all features as part
of Fig. 2. CMRs are resampled to a pixel spacing of 0.9375mmx0.9735mm and
resized to 128 x128 pixels. Deep learning models are implemented in PyTorch and
trained on an NVIDIA A100 80GB GPU for up to 500 SSL and fine-tuning epochs
with the Adam optimizer. The best model is selected by validation performance,
with SSL and fine-tuning learning rates chosen from {3 x 1073, 3x 1074, 3 x 107°}
and {1 x 1073, 5 x 1074, 1 x 10~*} respectively. We set B = 10, 7 = 0.1, k = 5,
Ao = 1078, and use tertiles for ¢ in PRS and MDLP in RegScore.

Comparison with state-of-the-art methods. We compare the performance
of RegScore against other scoring system methods, including Unit [1], MISS
[10], RiskSLIM [23] and FasterRisk [17]. The results of these experiments are
presented in Table 1. Both RegScore training approaches outperform competing
methods on classification metrics (with statistically significant differences, paired
t—test p—value <0.05) for £k = 5 and k = 50, while also providing interpretable
mPAP estimation. RegScore trained with OKRidge achieves slightly better
performance than the BS version, however, the difference is not statistically
significant. We present examples of scoring systems in Table 4. We also compare
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Table 3: Ablation study of the key components in proposed methods.
Method MAE | R T Acc. T F1 1
RegScorepgss 8.53 £ 0.15 63.39 £1.44 86.59+0.27 92.43+0.15

w/ tertile bins 9.38 = 0.36 53.47 £ 3.54 86.28 £ 1.81 92.28 £ 0.89
RegScoreokrs 8.69 +0.30 61.73 +£2.03 86.741+0.79 92.54 1 0.46
w/ tertile bins 9.41 +0.27 52.50 £ 3.36 86.21 £ 1.51 92.24 £ 0.81

PLR 7.14 £ 0.14 75.07 £0.87 88.66+1.29 93.46 +0.73
w/o Image 8.78 £0.91 62.28 £9.13 86.59 £ 2.12 92.41 £1.13
w/o SSL 7.79+0.29 70.00 £ 1.56 88.28 £ 0.58 93.32 £0.30

PRS;s 7.19 £ 0.16 74.85 +1.26 89.43+1.0 93.84+ 0.6
w/ MDLP bins  7.19+0.33 74.35 £2.29 88.74 £ 0.34 93.50 £0.21
w/o SSL 7.93 +£0.22 70.10 £ 3.00 88.97 £ 0.32 93.58 £0.17
w/o Image 7.60+£0.13 71.53 £1.00 88.97 £ 0.50 93.60 £ 0.24
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Fig. 2: Performance comparison of classification (left) and regression (center)
across model sizes (k). The right panel shows the mean feature weights in PLR.

PLR and PRS against machine learning models trained on tabular data, including
LR, XGBoost [2], Gradient Boosting Decision Trees (GBDT), and Random
Forest (RF). Additionally, we benchmark them against deep learning methods
for imaging and/or tabular data, including ResNet-50 [12], SimCLR [3], DAFT
[20], TabMixer [8], VIME [25], TabAttention [9], MMCL [11], and TIP [4] (Table
2). Although PLR and PRS yield slightly higher MAE values, 7.14 and 7.19,
respectively, compared to TIP (6.88), they outperform all other methods in
regression performance, with all but one difference being statistically significant.
Notably, PRS achieves the highest classification metrics (F1 = 93.84) among the
evaluated approaches, while also offering interpretability.

Ablation study. We conduct an ablation study (Table 3) to assess key aspects
of our methods. The performance of both PLR and PRS worsens when trained
without image data or SSL, highlighting the importance of the training procedure
and bimodality. In all methods, modifying the discretization function leads to a
decline in performance, underscoring the need to carefully select an appropriate
binning strategy for the algorithm.
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Table 4: Examples of RegScore for mPAP estimation and other scoring systems
for PH classification.

a. RegScore b. FasterRisk

feature mPAP feature points
bias 40.46 bias 4
1.0 < reveal _score < 6.0 -11.23 1.0 < reveal_score < 6.0 -3
0.73 < vmi < 2.87 8.14 72.9 <rv_syst_mass < 259.04 3
49.17 < rvef < 82.0 -5.90 270 < diastolic_pa_area < 545 -3
311.46 < systolic_pa_area < 672.0 -8.52 166 < septal_angle_syst 4
166.0 < septal angle syst 10.71  pericardial _ef fusion = No -2
mPAP [mmHg]: => risk PH: 1/(1 + exp(—score))

c. RiskSLIM d. MISS
feature points feature No PH PH
bias 3 bias -5 -4
1.0 < reveal _score < 6.0 -2 1.0 < reveal_score < 6.0 -1
rv dia mass index < 12.56 1 12.56 < rv_dia_mass_index -4 -3
270 < diastolic_pa_area < 545 -2 270 < diastolic_pa_area < 545 0 -2
166 g septal a;:.gle7 syst 9 166 Ag sey‘talianglersyst 3 -1
pericardial _eff’u.si;n — No 1 pericardial_ef fusion = UNK -1 0

= score: =>=>

risk PH: 1/(1 + exp(—score))

4 Discussion and Conclusions

In this paper, we introduced scoring systems for regression tasks. For diseases like
PH which are diagnosed by thresholding specific measurements, RegScore offers
higher clinical interpretability. Unlike traditional scoring systems, RegScore not
only provides an interpretable prediction but also directly relates it to the measure
of interest. RegScore outperformed other scoring systems on the classification
task (p—value <0.05). RegScore is efficient to calculate - it can be generated in
minutes (/55 seconds for BS variant), whereas deep learning models require
hours for training. This speed enables the exploration of multiple near-optimal
models to select the best one by domain experts. Furthermore, PLR and PRS
introduce almost no computational overhead compared to TIP, as they only
require a linear layer with additional parameters (N or D outputs instead of 1).

We examined the impact of model size k on the performance of RegScore and
PRS, with results presented in Fig. 2. Across all model sizes, RegScore achieves
better classification results than FasterRisk, with larger models yielding improved
classification and regression performance. PRS results remain stable due to the
model’s personalized nature, which adapts to the number of selected features.
Because PLR directly couples tabular features to predictions, we can analyze
feature importance. In Fig. 2, we present mean weight values for each feature in
PLR. High coefficients are assigned to features also selected by RegScore (e.g.
systolic septal angle, reveal score), aligning with findings from other studies [18§].

Our methods have limitations. Similar to other scoring systems, our ap-
proach may underperform on datasets characterized by highly non-linear feature
interactions. What is more, there is a trade-off between interpretability and
performance. Shifting from the most effective black-box TIP toward RegScore
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increases interpretability but reduces regression performance. This trade-off arises
because PLR, PRS, and RegScore constrain their predictions by coupling them
with tabular data. However, this flexibility allows clinicians to choose between
more interpretable or higher-performing models based on their needs. Future
work could address this trade-off by incorporating binning into the optimization
process to enhance performance while maintaining interpretability.

In summary, we introduced RegScore, a novel approach for interpretable scor-
ing in regression tasks, along with PLR and PRS, which enhance interpretability
in bimodal models. Our results show that RegScore outperforms existing scoring
systems in PH classification and holds promise for broader clinical applications.
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