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Abstract. Neurologic emergencies need to treat unspecified anomalies with var-

ious shapes, intensities, and locations in 3D non-contrast brain CT. However, in 

practice, patients with anomalies take a relatively small portion of total CT vol-

umes. In this situation, excluding unremarkable scans could reduce radiologists' 

workload. We used a generative unsupervised anomaly detection (GUAD) with 

3D Hierarchical Diffusion AutoEncoder (HDAE) model to develop this. In this 

study, we considered anomalies in two perspectives and made models. One is a 

Coarse-Morphological anomaly detection Model (CMM), and the other is a Fine-

Grained anomaly detection Model (FGM). We ensembled these models' deci-

sions for the exclusion of the unremarkable scans. Models were trained with nor-

mal scans of 28,510 from Asan Medical Center (AMC). For evaluation, we 

mainly used two consecutive test sets of 544 scans from AMC and 1,795 scans 

from Gangneung Asan Hospital (GNAH). Among clinically significant and un-

remarkable scans, our study showed [NPV (Negative Predictive Value)/workload 

reduction] of [98.1%/9.7%] and [96.7%/19.9%] for AMC and GNAH, respec-

tively. Additionally, we used a public dataset (NPV of 98.5%) and five other 

external hospitals' hemorrhage sets (NPV of 96.0%) to evaluate robustness. Un-

der the reasonable NPV, models showed the potential for workload reduction by 

omitting unremarkable scans. Compared to individual results of CMM or FGM, 

the ensembled decision usually shows NPV advantages. Also, with visual results, 

we observed our model could detect various types of anomalies.  

Keywords: 3D Generative Model, Anomaly Detection, Workload Reduction, 

Coarse-Fine Ensemble. 

1 Introduction 

Generative models (GMs) achieved significant advancements in capturing the under-

lying data distribution, allowing them to generate realistic data. With various 
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applications of GMs in the medical domain [1, 2], sometimes GMs have been adopted 

in unsupervised anomaly detection tasks. Diffusion probabilistic models [3, 4] have 

been used in Generative Unsupervised Anomaly Detection (GUAD) [5-8]. In GUAD, 

GMs were trained only with normal data. They understood the normal data distribution 

and could capture the deviation of normal data. When we input normal data, GUAD 

usually reconstructs scans with little difference, but when we input abnormal data, re-

constructed normal-like scans have a significant difference compared to abnormal in-

put. After producing a difference map between input and reconstruction, post-pro-

cessing yields anomaly scores in areas over the anomaly score threshold. 

In the case of neurologic emergencies, various diseases should be treated in different 

sizes, shapes, locations, intensities, and prevalence rates. Non-contrast brain computed 

tomography (CT) is usually used as standard screening for fast scanning time. In prac-

tice, of the total medical scan readings, the volume of the abnormal group accounts for 

a smaller portion than that of the normal group. For this reason, excluding normal scans 

reduces the workload of radiologists. In chest radiographs, some previous studies show 

that commercial deep-learning software can reduce radiologists’ workload by about 8 

to 17% [9-12]. Using brain CT modality, we attempted to evaluate the workload reduc-

tion in neurological emergencies. We have assumed that GUAD may be an appropriate 

method for detecting non-specific abnormalities and, in the same sense, able to filter 

out unremarkable scans with no abnormalities. Also, GUAD has an efficiency that sets 

variations up as one class of “deviation from the normal group.” Therefore, there is no 

need to build many supervised models for each anomaly. Our goal is to exclude some 

portion of the normal group by setting the anomaly decision cut-off as low as possible. 

Of course, achieving high Negative Predictive Values (NPV) is most important. 

In this study, we suggest a perspective that anomalies need to be treated as two sides. 

One is a type of coarse morphological anomaly, and the other is a type of fine-grained 

anomaly. We build two models of coarse morphological anomaly detection model 

(CMM) (Fig.1.a) and fine-grained anomaly detection model (FGM) (Fig.1.b). Now, 

we describe our suggestion with visual results. On one side, we describe the need for 

CMM. As the Fig.2. a, b, when a model only focuses on reconstructing abnormal “in-

tensity” areas to normal, its reconstruction cannot be considered normal images. Indeed, 

reconstruction of CMM with modification of the brain’s morphology seems like normal 

images. CMM is necessary to catch morphological anomalies (Fig.2. c. Hydrocephalus, 

Fig.2. d. mass effect of hemorrhage). On the other side, we describe the need for FGM. 

Although the CMM model has a reasonable aspect for anomaly detection, it could 

change normal brain anatomy (e.g., ventricle or subarachnoid space) as a variation of 

the normal brain and sometimes yield many false positives (Fig.2. e). Detecting fine-

grained anomalies like small infarctions among false positive areas may be challenging. 

So, when we train FGM, we give hard conditions such as brain anatomy segmentation 

mask, which consists of subarachnoid space, ventricle, and brain boundary [13]. Hard 

conditioning makes FGM yield relatively few false positives. As a result, as shown in 

Fig.2. f, we could set a low anomaly score threshold in the processing stage and find 

fine-grained anomalies. In sum, we use complementary models to treat anomalies. 

CMM is relatively easy to modify input scans’ morphology to detect coarse morpho-

logical anomalies. FGM detects slight intensity gap anomalies or small-size anomalies. 
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As part of the anomaly decision process (Fig.1.c), we exclude scans predicted as unre-

markable from both models simultaneously and consider that they do not need to be 

referred to radiologists. For the models’ architecture (Fig.1.a, b), we used a 3D ex-

panded hierarchical diffusion autoencoder [14], which consists of a semantic encoder 

to extract CT’s feature and a DDPM [15] U-Net to output the same image as the input 

CT. HDAE is suitable for our task because it treats images from coarse to fine levels 

and has high reconstruction performance. 

We evaluated our model's ability to distinguish remarkable cases with critical find-

ings in brain CTs from unremarkable cases, which included normal and benign cases. 

Our model was tested using one internal dataset (AMC: Asan Medical Center) and three 

external datasets: external dataset 1 (GNAH: Gangneung Asan Hospital), external da-

taset 2 (an open dataset from the 2019 RSNA Brain Hemorrhage Challenge [16]), and 

external dataset 3 (a multi-institutional dataset of brain hemorrhages). Notably, the in-

ternal dataset and external dataset 1, both collected consecutively from emergency de-

partments, represent real-world clinical data. To evaluate the clinical utility of our 

model, we focused on negative predictive value (NPV) as the primary evaluation metric 

and analyzed workload reduction (WLR) across various anomaly decision thresholds. 

Additionally, we assessed the benefits of using a decision ensemble of FGM and CMM 

to improve NPVs. Our code is available at https://github.com/Krying/WLR_ANO_3D. 

In summary, our study makes two key contributions:  

 

⚫ We demonstrate the potential of GUAD for workload reduction by excluding 

cases without critical findings using real-world datasets  

 

⚫ We propose an anomaly detection approach that considers coarse morphological 

and fine-grained anomalies through qualitative assessment. 

 

Fig. 1. The overall workflow of our study. (a) and (b) are the model architectures (HDAE) of 

CMM and FGM. (c) is the process of making anomaly decisions using FGM and CMM. (d) is 

the process of deriving anomaly scores with the difference map between input and reconstruction 

images. (e) is the data flow of the train, valid (for anomaly decision cut-off), and various test sets. 
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Fig. 2. Various cases of anomalies. (a) intracranial hemorrhage, (b) hemorrhage with hydroceph-

alus, (c) hydrocephalus, (d) subdural hemorrhage, (e) infarction, (f) hypoxic brain injury. Each 

case shows the original with lesion mask, reconstruction of FGM and CMM with anomaly map. 

The red and blue map indicates the hyper and the hypo intensity anomalies, respectively. 

2 Material and Methods 

2.1 Study Population 

In Fig1.e, we summarized the data used for training, validation, and test. All training 

and validation data were collected retrospectively (from Jan. 2000 to Aug. 2018) from 

AMC. Among 32,159 normal scans, 29,246 were used for GUAD model training (age: 

44.2±18.6 (Mean±SD) years; female: 53.5%). The remaining 2,913 normal cases, 643 

hemorrhage cases, and 455 infarction cases form a validation set. This validation set 

was used to determine the cut-off of the anomaly decision. Test datasets consist of one 

internal test set and 3 external test sets. Test sets of internal (AMC) and external 1 

(GNAH) were collected consecutively Feb. 2019 (one month) and from Jan. to May 

2019 (3 months), respectively. For external dataset 2, we randomly selected normal 

cases of 97 from any-hemorrhage group among RSNA dataset [16]. Resembling the 

class ratio of external dataset 1, we randomly selected benign of 111 and abnormal of 

36 cases. External dataset 3 comprised five other external hospitals that had hemorrhage 

and normal cases. Although this dataset is unsuitable for our theme, which aims to treat 

various diseases, we used it to confirm our models’ robustness for other CT scanners 

(GE, SIMENS, PHILIPS, and TOSHIBA). The internal set included participants aged 

58.7 ± 17.9 years, of whom 51.5% were female. External set 1 had ages of 61.5 ± 17.5 

years with 47.7% female participants, and external set 3 had ages of 53.8 ± 18.1 years 

with 49.7% female participants. Abnormal scans consist of cases with hemorrhage, in-

farction, mass, hydrocephalus, and others. 

2.2 Pre-processing and Post-processing for Anomaly Scoring 

For preprocessing, the Brain Extraction Tool [17] was applied, and we performed 

depth-wise padding or crop to set all the scans’ depth as 32 and then resized to 256 × 

256 × 32 (for FGM) and 96 × 96 × 32 (for CMM) respectively. Intensity normalization 
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was performed Hounsfield unit [-10, 90] to [0, 1]. For postprocessing of anomaly scor-

ing, in the difference map, logits under HU 7.5 (FGM) and 10 (CMM) were removed 

to suppress minor variations, and median smoothing (radius=1) was applied twice. 

Small objects with fewer than 75 voxels were removed, and all the absolute values of 

voxels were summed up. 

 

2.3 Experiment Details 

For here 𝑥 is the input image, 𝑥𝑡 is a noisy image, 𝑍𝑒𝑛𝑐 are feature vectors, and 𝑝 is the 

reverse process [15], HDAE [14] consists of a semantic encoder 𝑍𝑒𝑛𝑐 = 𝐸𝑛𝑐(𝑥) and a 

conditional Denoising Diffusion Implicit Model (DDIM) [18] 𝑝(𝑥𝑡−1 ∣ 𝑥𝑡, 𝑍𝑒𝑛𝑐) In-

stead of DDIM, we used the Denoising Diffusion Probabilistic Model (DDPM) [15]. 

The semantic encoder extracts semantic vectors from the input images, which are then 

fed into the corresponding DDPM U-Net layers as condition hierarchically. For the 

semantic conditioning method, we followed Diffusion AutoEncoder [19] and HDAE as 

adaptive group normalization.  

For training FGM, we gave the condition of the segmentation mask (𝐶𝑚𝑎𝑠𝑘 ) to 

DDPM 𝑝(𝑥𝑡−1 ∣ 𝑥𝑡, 𝑍𝑒𝑛𝑐 , 𝐶𝑚𝑎𝑠𝑘). We used a linear beta noise scheduler 𝑇 = 1000 and 

only used 550 timesteps. Because our task is just the reconstruction of input image as a 

normal-like image, we did not need to focus on noise part 𝑇 > 550. Where 𝜖 is Gauss-

ian noise, and 𝑡 is the time of a Gaussian diffusion process, we used the loss function 

defined in equations (2), and (3) for noise prediction, like DDPM. More mathematical 

formulas can be found in [15, 19]. For inference, we started inference from T=500 

(FGM) and T=400 (CMM) to preserve patients’ identical traits as possible. FGM was 

trained using normal scan size of 256 × 256 × 32, 10 epochs, learning rate (lr) of 3e-5, 

and batch size of 3. CMM was trained using normal scan size of 96 × 96 × 32, 22 

epochs, lr of 4e-5, and batch size of 8. Experimentally, resolution of 96 × 96 × 32 is 

enough to find coarse morphological anomalies. Both models used a cosine decay lr 

scheduler [20] and were trained using an A100 GPU. We used PyTorch framework 

v2.5.1, CUDA 12.1, and MONAI [21] library v1.4.0. 

 𝑍𝑒𝑛𝑐 = 𝐸𝑛𝑐(𝑥) (1) 

 𝐿𝐶𝑀𝑀 = ∑ 𝔼𝒙0,𝜖𝑡
𝑇
𝑡=1 [‖𝜖𝜃(𝑥𝑡 , 𝑡, 𝑧𝑒𝑛𝑐 𝑜𝑓 𝐶𝑀𝑀) − 𝜖𝑡‖

2

2
] (2) 

 𝐿𝐹𝐺𝑀 = ∑ 𝔼𝒙0,𝜖𝑡
𝑇
𝑡=1 [‖𝜖𝜃(𝑥𝑡 , 𝑡, 𝑧𝑒𝑛𝑐 𝑜𝑓 𝐹𝐺𝑀 , 𝐶𝑚𝑎𝑠𝑘) − 𝜖𝑡‖

2

2
] (3) 

 

2.4 Evaluation: NPV and Workload reduction 

We used two evaluation metrics NPV and WLR. Metrics’ formulation is described in 

equations (4) and (5). We considered unremarkable cases as negative class. 

 𝑁𝑃𝑉 =
(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
  (4) 

 𝑊𝐿𝑅 =
(𝑇𝑟𝑢𝑒 𝑈𝑛𝑟𝑒𝑚𝑎𝑟𝑘𝑎𝑏𝑙𝑒 𝑠𝑐𝑛𝑎𝑠)

(𝑈𝑛𝑟𝑒𝑚𝑎𝑟𝑘𝑎𝑏𝑙𝑒 𝑠𝑐𝑎𝑛𝑠+𝑅𝑒𝑚𝑎𝑟𝑘𝑎𝑏𝑙𝑒 𝑠𝑐𝑎𝑛𝑠)
    (5) 
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Fig. 3. Various cases of anomalies. (a) cavernoma, (b) subdural hygroma, (c) arteriovenous mal-

formation, (d) infarction, (e) cerebral venous thrombus, (f) metabolic disease, (g) subarachnoid 

hemorrhage with metal artifact, (h) hemorrhage with hydrocephalus and intraparenchymal mass. 

Results of (a), (c), (e), and (g) are from FGM, and results of (b), (d), (f), and (h) are from CMM. 

The red and blue map indicates the hyper and the hypo intensity anomalies, respectively. 

 

Fig. 4. Scatter plots and box plots of Anomaly Scores and plots of NPVs at various anomaly 

thresholds. (a) and (b) are the plots of internal and external 1 respectively. Scatter plots indicate 

the log scaled anomaly scores (x-axis means scores of CMM, and y-axis means scores of FGM). 

In box plots of anomaly score, class 0, 1, and 2 means ‘normal’, ‘benign’, and ‘abnormal’ respec-

tively. Plots of “NPV at various anomaly decision cut-off values” (lower right of each figure) 

display the NPVs of FGM, CMM, and ensembled decision. The red markers indicate the NPVs 

of ensembled decision from CMM and FGM. The black markers indicate each model’s NPVs. 
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Table 1. NPVs and WLRs for test sets at various anomaly decision cut-off (NPVs of 0.98, 0.99, 

and more than 0.99) from validation set. 

Cut-off Metrics Internal test External test 1 External test 2 External test 3 

>99% 
NPV 98.1% (53/54) 96.7% (357/369) 98.5% (64/65) 96.0% (360/375) 

WLR 9.7% (53/544) 19.9% (357/1795) 26.2% (64/244) 27.8% (360/1295) 

99% 
NPV 95.9% (71/74) 96.0% (433/451) 97.1% (68/70) 96.4% (429/445) 

WLR 13.1% (71/544) 24.1% (433/1795) 27.9% (68/244) 33.1% (429/1295) 

98% 
NPV 94.2% (97/103) 95.6% (503/526) 96.5% (83/86) 96.2% (477/496) 

WLR 17.8% (97/544) 28.0% (503/1795) 34.0% (83/244) 36.8% (477/1295) 

Table 2. Comparison of NPVs of FGM, CMM and Ensembled results for test sets at various 

anomaly decision cut-off (NPVs of 98%, 99%, and more than 99%) from validation set. 

Test Sets Internal test External test 1 External test 2 External test 3 

Cut-off >99% 99% 98% >99% 99% 98% >99% 99% 98% >99% 99% 98% 

FGM 0.949 0.934 0.906 0.960 0.953 0.944 0.953 0.956 0.927 0.949 0.946 0.939 

CMM 0.944 0.923 0.924 0.941 0.935 0.930 0.989 0.971 0.971 0.945 0.944 0.946 

Ensemble 0.981 0.959 0.942 0.967 0.960 0.956 0.985 0.971 0.965 0.960 0.964 0.962 

3 Results and Discussion 

3.1 Workload Reduction with Reasonable NPV 

We evaluated the NPV and WLR of our models at different anomaly decision cut-offs 

(98%, 99%, and >99%) across internal and external test datasets (Table 1). For the 

highest threshold (>99%), the NPV across the four test sets ranged from 96.0% to 

98.5%, while the corresponding WLR varied between 9.7% and 27.8%. As expected, 

lowering the anomaly decision cut-off to 99% led to a slight decrease in NPV (ranging 

from 95.9% to 97.1%), but with an increase in WLR (13.1%–33.1%). Further reducing 

the cut-off to 98% resulted in a more pronounced trade-off, with NPVs between 94.2% 

and 96.5%, accompanied by WLRs of 17.8%–36.8%. These results indicate that higher 

cut-offs ensure higher NPVs but limit the extent of workload reduction. Conversely, 

lower thresholds yield greater workload reduction but at the cost of reduced NPV.  

 

3.2 The Effect of Model Ensemble 

To assess the impact of our ensemble approach, we compared NPVs of the individual 

models (FGM and CMM) against the ensembled model at different cut-offs (Table 2). 

For critical findings, excluding external test 2, the ensembled model outperformed the 

individual models across all thresholds. For the real-world dataset (internal, external 

dataset 1), at NPV of >99%, the ensemble achieved an NPV of 98.1% for internal test, 

compared to 94.9% for FGM and 94.4% for CMM. 96.7% and, for external test 1, the 
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ensemble achieved an NPV of 96.7%, compared to 96.0% for FGM and 94.1% for 

CMM. The coarse-fine ensemble improved NPV performance over FGM and CMM 

alone. These results suggest that combining FGM and CMM enhances model reliabil-

ity, in identifying critical cases with high NPV. This approach would be particularly 

valuable in settings where reducing false negatives is paramount, such as emergency 

departments and acute care settings. 

 

3.3 Balancing Sensitivity and Workload Reduction 

An important consideration in deploying AI models for clinical decision support is the 

balance between sensitivity (ensuring high NPV) and WRL. Our study shows that set-

ting a higher anomaly decision cut-off (e.g. > 99%) maintains NPVs close to 98% while 

still achieving a reasonable WLR (~10–35%). However, a more relaxed threshold (e.g., 

98%) increases WLR (~20–44%) at the cost of a slight NPV decline. Institutions must 

determine the optimal threshold based on their specific patient population and clinical 

workflow constraints. These findings highlight the importance of carefully selecting 

decision thresholds to minimize missed critical cases while maintaining workload effi-

ciency. 

 

3.4 Various Anomaly Cases and Misses Cases 

Fig. 3 shows the cases of anomaly detection exist in real-world conditions. In real-

world conditions, at NPV of >99%, our model classified 54 cases as unremarkable in 

the internal test dataset, among which one case was later identified as critical. In the 

external dataset, 12 out of 369 cases classified as unremarkable were later found to be 

critical. This underscores the need for human oversight and potential hybrid models 

where AI serves as an assistive tool rather than a sole decision-maker. 

 

3.5 Limitation 

The primary limitation of our study is the lack of comparative analysis. To the best of 

our knowledge, no prior studies have specifically addressed workload reduction (WLR) 

on brain CT. Our study may serve as one of the initial steps in this research direction. 

Given the novelty of the topic, our primary goal was to demonstrate the clinical rele-

vance and potential impact of applying deep learning in this context. Additionally, the 

model’s inference time per scan was approximately 88 seconds for CMM and 120 sec-

onds for FGM on an RTX 3090 GPU (VRAM < 6 GB). While these times are reason-

able, there is potential for further optimization. 

4 Conclusion 

Our model has the potential to significantly alleviate the workload in emergency radi-

ology by prioritizing cases requiring urgent review. The ability to maintain high NPVs 

across diverse datasets suggests that the model could be deployed across different in-

stitutions with minimal performance degradation. Additionally, we suggest a new 
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ensemble approach to enhance the model’s performance. Future work should focus on 

real-time deployment simulations and evaluating the impact on radiologist efficiency. 

In conclusion, our study provides strong evidence that deep learning-based anomaly 

detection can serve as a reliable tool for optimizing radiology workflows, improving 

efficiency, and maintaining diagnostic accuracy in emergency and acute care settings.  
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