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Abstract. Functional Magnetic Resonance Imaging (fMRI) is an ad-
vanced neuroimaging method that enables in-depth analysis of brain
activity by measuring dynamic changes in the blood oxygenation level-
dependent (BOLD) signals. However, the resource-intensive nature of
fMRI data acquisition limits the availability of high-fidelity samples re-
quired for data-driven brain analysis models. While modern generative
models can synthesize fMRI data, they often underperform because they
overlook the complex non-stationarity and nonlinear BOLD dynamics.
To address these challenges, we introduce T2I-Diff, an fMRI generation
framework that leverages time-frequency representation of BOLD sig-
nals and classifier-free denoising diffusion. Specifically, our framework
first converts BOLD signals into windowed spectrograms via a time-
dependent Fourier transform, capturing both the underlying temporal
dynamics and spectral evolution. Subsequently, a classifier-free diffusion
model is trained to generate class-conditioned frequency spectrograms,
which are then reverted to BOLD signals via inverse Fourier transforms.
Finally, we validate the efficacy of our approach by demonstrating im-
proved accuracy and generalization in downstream fMRI-based brain net-
work classification. The code is available at repository

Keywords: fMRI · Time-Frequency Image · Diffusion Models.

1 Introduction

With the rapid advancement of artificial intelligence, deep generative modeling
has shown promising capability in generating realistic variations of neuroimaging
data [26]. Although the generation of brain connectivity has been extensively
studied, research on the direct generation of fMRI signals remains limited [29,1].
fMRI signals are particularly valuable as they provide critical insights into neural
activity, enabling more precise assessment and identification of neuropsychiatric
and neurodevelopmental disorders [14,13]. Despite their significance, acquiring
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fMRI signals is challenging, often resulting in small sample sizes that limit the
performance of data-driven brain analysis models [17]. These limitations can
lead to data imbalances and a lack of temporal dynamics in acquired brain
signals, ultimately affecting the accuracy of predictive and diagnostic models
for neurological and psychiatric conditions [2,22]. To address these challenges,
generative techniques have been explored for synthesizing fMRI signals, enabling
data augmentation to enhance various downstream applications [15,19].

Generative models, such as Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs), have been widely used to synthesize realistic
time series data [3]. While GANs are known for generating high-quality samples,
VAEs are favored for their faster generation speed. However, both models face
challenges in achieving stable training, often struggling with issues like mode col-
lapse and optimization difficulties. For instance, Yoon et al. proposes TimeGAN,
which jointly trains adversarial and supervised loss components within a learned
embedding space, successfully preserving both the static and dynamic charac-
teristics of synthetic time-series data [27]. Apart from that, TimeVAE incorpo-
rates time-series components into its encoder-decoder network, enhancing in-
terpretability in time-series generation, where it has demonstrated success in
reducing overall training time compared to adversarial methods [5].

Recently, denoising diffusion probabilistic models (DDPMs) have gained trac-
tion in time-series applications due to their robustness against model collapse
[10]. However, their potential for capturing the complex intrinsic properties of
brain signals remains underexplored [29,1]. For example, Coletta et al. propose
different types of constraints to improve time-series generation: hard constraints
enforce fixed points and global minima; soft constraints introduce penalties to
guide the model towards desired temporal trends [4]. Furthermore, ImagenTime
leveraged the time-frequency images to generate synthetic data for general time-
series benchmarks, demonstrating the feasibility of capturing intricate spectral
and temporal patterns [12]. The recently proposed Diffusion-TS model intro-
duces a novel non-autoregressive diffusion model for time-series data, including
fMRI signals. This framework explicitly captures temporal dynamics through
transformer-based model architecture and disentangled seasonal-trend represen-
tations, achieving success across various generation tasks [28].

To address the challenge of insufficient inductive bias in dynamic brain char-
acterization, this paper introduces T2I-Diff, an fMRI generation framework that
leverages time-frequency image representations of BOLD signals and classifier-
free denoising diffusion. This approach effectively captures both spectral and
dynamic features underlying fMRI BOLD signals, which are essential for down-
stream brain disorder classification. Additionally, our framework incorporates
classifier-free denoising diffusion and EDM sampling for high-fideliy generation
of time-windowed fMRI spectrograms conditioned on subject classes. The gener-
ated time-frequency images are then reverted to BOLD signals via image-to-time
series transforms. Our method eliminates the need for additional classifiers to
guide brain profiles, thereby reducing training redundancy and simplifying model
optimization. We summarized our main contributions as follows:
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Fig. 1. Our framework T2I-Diff begins by (A.) preprocessing raw fMRI data in time do-
main and transforming into (B.) time-frequency spectrogram (image) using windowed
Fourier transform. Next, the images are fed into the diffusion model executes both (C.)
forward and (D.) reverse processes. Finally, we perform (E.) quality evaluation of the
generation and apply (F.) DA on top of the real fMRI signals for MDD classification.

1. Our proposed T2I-Diff framework is the first to integrate a time-frequency
image transform to capture complex spatiotemporal and spectral features
for fMRI BOLD signal generation and brain disorder classification.

2. We introduce classifier-free denoising diffusion and EDM sampling to gen-
erate conditioned time-windowed fMRI spectrograms without requiring an
additional classifier. This enables T2I-Diff to dynamically modulates the dif-
fusion process to guide the model in learning different brain signal profiles.

3. Our results shows that T2I-Diff demonstrates competitive performance on
time-frequency image generation and brain disorder (MDD) classification
complemented by class-conditioned synthetic fMRI BOLD signals.

2 Methods

Time-Frequency Image Transformation. Fig. 1 and 2 provides an overview
of our proposed framework. Given high-dimensional fMRI signals from S sub-
jects, denoted as XS = {xs}Ss=1, where each subject xs ∈ RD×T consists of
D regions of interest (ROIs) recorded over T time points, our objective is to
learn the underlying real data distribution pdata(XS) and generate a synthetic
distribution pθ(XS) that is statistically indistinguishable from the real data.

Unlike conventional time-series generative tasks that operate exclusively in
the time domain, our approach transforms fMRI time series into a time-frequency
spectrogram image using the windowed Fourier transform (WFT), defined as:

Xs(m, k) =

N−1∑
n=0

xs[n+mh]w[n] e−j2π k
N n, (1)



4 H. H. Tew, et al.

Fig. 2. Original vs synthetic BOLD signals and generated normalized spectrograms.
Our framework directly generates BOLD signals as opposed to correlation matrices.

which serves as the input to the generative model. Here, n ∈ {1, 2, . . . , N} is
the local time index within an WFT window of length N ; m ∈ {1, 2, . . . ,M} is
the window index, where the total number of windows are computed as M =
⌊(T − N)/h⌋ + 1 with signal length T and hop size h; and k ∈ {1, 2, . . . ,K} is
the frequency index, with the number of frequency bins defined as K = N/2+1
since only the first half of the spectrum is retained for real-valued signals.

Given an univariate input signal xs ∈ R1×T , the WFT produces a spectro-
gram image representation Xs ∈ R2×K×M , where the channels are doubled (2
channels) to store both the real XRe

s and imaginary XIm
s components of the

WFT output, and the spatial dimensions (height and width) of the image are
determined by the frequency bins K and time frames M , respectively. We fur-
ther perform component-wise normalization to accentuate between high and low
frequencies. This structured representation allows generative models to process
time-series data as images while preserving both spectral and temporal charac-
teristics, enabling robust generative modeling of the fMRI BOLD signals.

To reconstruct the original fMRI time series spectrogram representation, we
first unnormalize the real and imaginary components, we merge them to form a
complete complex spectrogram X̂s(m, k) = XRe

s (m, k) + jXIm
s (m, k). For each

window indexed by m and for local time indices n, we compute the inverse fourier
transform to reconstruct the fMRI BOLD signals as follows:

xs[n+mh] =
1

N

K−1∑
k=0

Xs(m, k) ej 2π
k
N n. (2)

Finally, these segments are recombined using the overlapping method with
Hann window to obtain the reconstructed time-domain signal x̃s. This process
ensures that both the spectral and temporal characteristics of the original fMRI
BOLD signals are preserved.

Classifier-Free Denoising Diffusion. Rather than incrementally adding noise
through a Markov chain, we employ EDM framework [7], which perturb the
ground-truth fMRI spectrogram images using a single noise level σt drawn from
a lognormal distribution. At each diffusion step t ∈ {0, 1, . . . , T}, the images are
corrupted according to the perturbation kernel pθ(xt | x0) which corresponds to
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xt = x0 + nt, where the total noise nt = σt · ϵt with σt = exp (ηt · Pstd + Pmean),
ηt ∼ N (0, 1) and ϵt ∼ N (0, I). Here, nt represents a sample from a Gaussian
distribution whose variance is modulated by the lognormal factor σt. This pro-
cess gradually transforms the fMRI spectrogram images into non-informative
Gaussian noise. The reverse process aims to learn the conditional distribution
pθ(xt+1 | xt) to reconstruct the original fMRI spectrogram images. In particular,
a deep neural network denoiser ϵθ(xt, σt) is trained to predict the the clean image
x0 from its noisy version xt at noise level σt across time steps. Specifically, the
noise scheduling is defined as σt =

(
σ
1/ρ
max + t

T−1

(
σ
1/ρ
min − σ

1/ρ
max

))ρ

. Using Heun’s
second-order method, the reverse-diffusion update is given by:

xt+1 = x′
t + (σt+1 − σ′

t) ·
1

2

[
x′
t − ϵθ(x

′
t, σ

′
t)

σ′
t

+
x′
t+1 − ϵθ(xt+1, σt+1)

σt+1

]
, (3)

where σ′
t = σt + γt σt and x′

t = xt +
√
σ′2
t − σ2

t ϵ
′
t is perturbed by noise ϵt ∼

N (0, S2
noiseI), where both γt and Snoise are EDM hyperparameters. By iteratively

applying this update from t = T down to t = 0, a synthetic fMRI spectogram
image x0 ∼ pθ(x) is sampled from the marginal data distribution.

To achieve class-conditioned generation, we apply classifier-free guidance
and parameterize the conditional distribution pθ(xt|c) via a conditional noise-
prediction model ϵθ(xt, t, c), where c is the subject class. For unconstrained gen-
eration, we then input a null token ∅ for the unconditional model ϵθ(xt, t) =
ϵθ(xt, t,∅). Concurrently, these noise-prediction models are trained to minimize
the discrepancy between the true noise ϵ and the predicted noise ϵθ across
timesteps, via the noise-matching objective L(θ) = Ext,ϵ,t,c

[
∥ϵ− ϵθ∥2

]
. The un-

conditional and conditional models are jointly trained by randomly setting c to
the unconditional class identifier ∅ with some discrete probability p∅.

3 Experiments and Results

Data Acquisition and Pre-processing. We preprocessed the dataset from
REST-meta-MDD Consortium database [24] using Data Processing Assistant
for Resting-State fMRI (DPARSF) [25]. This resting-state fMRI dataset consist
of 250 healthy controls (HC) and 227 Major Depressive Disorder (MDD) pa-
tients. The data were acquired using a Siemens (Tim Trio 3T) scanner (TR/TE
= 2000/30 ms, 3mm slice thickness). The brain was parcellated into 116 region-
of-interests (ROIs), including cortical and subcortical areas, and the mean time
series of 232 time points for each ROI was extracted using the Automated
Anatomical Labeling (AAL) atlas.

State-of-the-art Baselines. i) Quality Evaluation: Our proposed T2I-Diff
model is compared against six time-series generative model baselines. These
baselines include generative adversarial networks (GANs) and diffusion models
such as CoT-GAN [23], DiffTime [4], DiffWave [9], TimeVAE [5] and Diffusion-
TS [28]. ii) Classification Score: We further evaluate the performance of our
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Table 1. Comparison of fMRI signal generation quality with SOTA time-series gener-
ation and our proposed T2I-Diff.

CoT-GAN DiffTime DiffWave TimeVAE TimeGAN Diffusion-TS T2I-Diff

Context-FID 7.813±.550 0.340±.015 0.244±.018 14.449±.969 0.126±.002 0.105±.006 1.384±.107

Correlational 26.824±.449 1.501±.048 3.927±.049 17.296±.526 23.502±.039 1.411±.042 4.121±.094

Discriminative 0.492±.018 0.245±.051 0.402±.029 0.476±.044 0.484±.042 0.167±.023 0.400±.059

Predictive 0.185±.003 0.100±.000 0.101±.000 0.113±.003 0.126±.002 0.099±.000 0.102±.001

Table 2. Ablation study of short-term and long-term fMRI signal generations across
sequence lengths 24, 64, 128 and 256.

24 64 128 256 24 64 128 256

Context-FID Correlation

1.384±0.107 7.141±0.789 10.655±1.001 1.661±0.146 4.121±0.094 4.737±0.136 3.525±0.101 4.124±0.243

Discriminative Predictive

0.400±0.059 0.280±0.268 0.176±0.090 0.360±0.164 0.102±0.001 0.100±0.001 0.098±0.001 0.095±0.002

proposed model with a special designed classifier for brain connectvity [8]. The
baselines include 1D-Deep Convolutional GAN (1D-DCGAN) [16] and Wasser-
stein GAN Gradient Policy(WGAN-GP) [6].

Implementation Details. i) Connectivity Network Construction: The func-
tional connectivity of brain networks is constructed using Ledoit-Wolf (LDW)
regularized shrinkage covariance estimator to keep the strongest τ = 40% con-
nections and set other connections to zeros. This results in FCs of size 116x116
for each subject. ii) T2I-Diff Training: The proposed T2I-Diff framework gener-
ates the fMRI signals corresponding to the subjects’ condition (HC and MDD).
The BrainNetCNN classifier then discriminates between the HC and MDD sub-
jects. We train the T2I-Diff via an Adam optimizer using a learning rate of 3e−4

for 1000 epochs. For all experiments, we use 18 diffusion sampling steps and
experiment in image sizes of 8×8, 16×16, 32×32, and 64×64. iii) Data Augmen-
tation and Classifier Training: The trained T2I-Diff is used to augment fMRI
signals of 1×, 2× and 3× on top of the real fMRI signals. For our classifier,
the L2 regularization weight decay from 10−8 to 10−2 , scheduler learning rate
reduce factor from 0.1 to 0.9, batch size from 5 to 16 same as in [18]. These
model hyperparameters are selected based on a 5-fold stratified cross-validation.

3.1 Overall Performance

We first trained our diffusion models unconstrained to produce similar outputs.
Then, we followed the standard setting for the evaluation of time series genera-
tion from Diffusion-TS [28]. The purpose of our experiments is to demonstrate
the effectiveness of the proposed time-frequency representation and classifier-
free diffusion models in achieving a trade-off between FID and predictive scores,
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Table 3. Classification performance of different classifiers trained on the ground-truth
data and increasing amount of augmented time series data using our proposed model.

Method Train Set Accuracy Recall Precision F1-Score ROC

W/O Augmentation Real 58.90 ± 2.98 58.90 ± 2.98 59.56 ± 2.74 58.39 ± 3.09 59.00 ± 2.56

1D-DCGAN
Real + Synth 1× 62.94 ± 2.01 62.94 ± 2.01 63.43 ± 2.20 62.23 ± 2.68 62.71 ± 2.26
Real + Synth 2× 65.04 ± 2.02 65.04 ± 2.02 66.35 ± 2.13 64.12 ± 2.10 64.74 ± 2.08
Real + Synth 3× 58.21 ± 2.98 58.21 ± 2.98 55.70 ± 6.58 52.86 ± 4.14 57.38 ± 3.11

WGAN-GP
Real + Synth 1× 66.02 ± 4.25 66.02 ± 4.25 66.22 ± 4.24 65.93 ± 4.20 65.95 ± 4.13
Real + Synth 2× 64.76 ± 4.25 64.76 ± 4.25 65.67 ± 4.08 64.23 ± 4.52 64.73 ± 4.14
Real + Synth 3× 64.56 ± 3.18 64.56 ± 3.18 64.78 ± 3.17 64.38 ± 3.15 64.41 ± 3.08

T2I-Diff (Ours)
Real + Synth 1× 66.87 ± 3.22 66.87 ± 3.22 67.06 ± 3.34 66.83 ± 3.21 67.26 ± 6.00
Real + Synth 2× 65.41 ± 2.37 65.41 ± 2.37 66.30 ± 1.67 64.73 ± 2.80 65.75 ± 3.22
Real + Synth 3× 66.03 ± 1.75 66.03 ± 1.75 66.50 ± 1.32 65.85 ± 1.82 66.58 ± 5.33

comparable to other time-series generative models. Rather than solely aiming
for state-of-the-art sample quality metrics on these benchmarks, our primary
goal is to validate the ability of our approach to model complex spatiotemporal
patterns and excel in capturing conditional distribution over time.

fMRI Signal Generation Quality. Table 1 compares our T2I-Diff frame-
work with state-of-the-art time-series generative models across four evaluation
metrics for a time-series generation length of 24. T2I-Diff demonstrates competi-
tive overall performance, surpassing strong time-series generation models such as
CoT-GAN, DiffWave, TimeGAN, and TimeVAE. Notably, the low discriminative
and predictive scores suggest that T2I-Diff effectively generates synthetic fMRI
BOLD signals with in-distribution temporal patterns and spectral features that
may not be fully captured in the time domain. By leveraging the WFT image
transform, the diffusion model not only preserves global contextual informa-
tion but also models the complex spatiotemporal dynamics inherent in fMRI
signals. While T2I-Diff does not achieve the highest overall scores, our results
demonstrate that the time-series-to-image generative framework is well-suited
for modeling high-dimensional, complex fMRI time series.

Ablation Study. Table 2 assess the impact of sequence length on model per-
formance, we conducted ablation studies on time-series generation lengths of
64, 128, and 256 to contrast the sequence length of 24. Shorter sequences ex-
hibit a low context-fid score and high predictive score, but their lower predictive
score suggests a limited ability to capture temporal dynamics due to insuffi-
cient contextual information. Mid-length sequences (64 and 128) show improved
context-fid scores but struggle with increased complexity. The longest sequence
(256) achieves the best context-fid and predictive scores, effectively capturing
both global and fine-grained features.

Classification Score. To validate the fidelity of the generated samples, we
evaluate the classification performance of BrainNetCNN and compare it against



8 H. H. Tew, et al.

Fig. 3. Real and synthethic (left) connectivity pattern and (right) brain networks.

ID-DCGAN and WGAN-GP on our proposed fMRI dataset. Here, we main-
tain the original sequence length rather than truncating, as supported by the
performance of long sequence generation in Table 1. Table 3 presents the classi-
fication results on the 5-fold cross-validation test set. Notably, T2I-Diff achieves
the highest accuracy in the 1× data augmentation setting. Furthermore, the
results indicate that as the augmentation range increases, our model exhibits
lower variance, suggesting that the synthetic data generalizes well across vary-
ing augmentation levels while maintaining consistent classification performance.
The results highlight that T2I-Diff not only enhances the diversity of synthetic
fMRI samples but also effectively captures and preserves critical structural and
functional patterns for downstream tasks such as brain disorder classification.

3.2 Functional Connectivity (FC) Visualization

To further evaluate the quality of generated data, we derived functional connec-
tivity (FC) measures from the synthetic fMRI BOLD signals to assess differences
between healthy controls (HC) and major depressive disorder (MDD) patients.
We computed the average connectivity using a threshold of 0.6 to highlight sig-
nificant connections. Our analysis reveals that the synthetic FC closely aligns
with the functional changes observed in the real FC distribution. Furthermore,
connectogram comparisons between HC and MDD in both real and synthetic FC
data indicate a reduction in connectivity within the left superior frontal gyrus
(FrontalSupL) and decreased connectivity between the left middle frontal gyrus
(FrontalMidL) and the anterior cingulate cortex (CingulumAntL). The results
suggest impaired cognitive functions, such as difficulties in decision-making and
emotion regulation, reinforcing the biological plausibility of the generated data.
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4 Conclusions and Future Work

In this paper, we propose T2I-Diff, which effectively captures both temporal
dynamics and spectral evolution underlying the ground-truth data distribution
for accurate brain signal generation. For future work, we aim to further validate
MDD classification using graph-based deep learning models [21,20]. Further-
more, we plan to incorporate energy-based models to identify out-of-distribution
(OOD) patterns in brain spectogram associated with neurological disorders [11].
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