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Abstract. Ensuring equitable access to medical communication is cru-
cial for deaf and hard-of-hearing individuals, especially in clinical set-
tings where effective patient-doctor interaction is essential. In this work,
we present a novel radar-based imaging framework for Sign Language
recognition (with a focus on the Italian Sign Language, LIS), specifi-
cally designed for medical communication. Our method leverages 60 GHz
mm-wave radar to capture motion features while ensuring anonymity by
avoiding the use of personally identifiable visual data. Our approach per-
forms sign language classification through a two-stage pipeline: first, a
residual autoencoder processes Range Doppler Maps (RDM) and moving-
target indications (MTI), compressing them into compact latent repre-
sentations; then, a Transformer-based classifier learns temporal depen-
dencies to recognize signs across varying durations. By relying on radar-
derived motion imaging, our method not only preserves privacy but also
establishes radar as a viable tool for analyzing human motion in med-
ical applications beyond sign language, including neurological disorders
and other movement-related conditions. We carried out experiments on
a new large-scale dataset containing 126 LIS signs — 100 medical terms
and 26 alphabet letters. Our method achieves 93.6% accuracy, 87.9%
sensitivity, 99.3% specificity, and an 87.7% F1 score, surpassing existing
approaches, including an RGB-based baseline. These results underscore
the potential of radar imaging for real-time human motion monitoring,
paving the way for scalable, privacy-compliant solutions in both sign
language recognition and broader clinical applications. The code is avail-
able at https://github.com/IngRaffaeleMineo/SignRadarClassification_
MICCAI2025 and the dataset will be released publicly.
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1 Introduction

Sign languages (SLs) are complete visual-gestural systems used by deaf com-
munities worldwide. In Italy, the Italian Sign Language (LIS) was formally ac-
knowledged in May 2021, following an extended period of research highlighting
its linguistic and socio-semiotic complexity [3, 29].

In medical settings, communication barriers can lead to misunderstandings
and hinder timely care for deaf patients. Employing SL interpreters remains the
ideal solution; however, interpreters may not always be available, especially in
emergency or resource-limited contexts. Efforts to develop automatic sign lan-
guage recognition (SLR) technologies have thus gained momentum [10], with the
goal of bridging the communication gap between patients and medical staff. Yet
privacy concerns persist when deploying visual sensors in sensitive environments
like hospitals, where camera-based approaches may be restricted by regulations
or ethical constraints [16,19].

Against this backdrop, radio-frequency (RF) sensing, particularly RADAR,
has emerged as a promising avenue for privacy-preserving SLR. RADAR sensors
capture motion and velocity information while inherently obscuring fine-grained
visual details that could compromise patient identity. This attribute is especially
beneficial in dynamic healthcare scenarios, where consistent lighting and uniform
backgrounds are not guaranteed [11, 17]. Nevertheless, the existing RADAR-
based SLR datasets are comparatively small, often limited to a narrow range of
gestures and signers, which limits the generalizability of such systems [4, 5, 21].

This paper thus introduces a privacy-preserving method for LIS recognition
in healthcare contexts, leveraging millimeter-wave RADAR technology. Our work
focuses on 126 isolated signs relevant to patient-doctor communication, includ-
ing 100 lexical items and 26 letters of the LIS alphabet. The methodology and
the dataset collection strategy leverage RADAR sensing as a privacy-preserving
alternative to traditional RGB and depth cameras, offering a lightweight solution
that is less sensitive to lighting conditions and environmental occlusions.

2 Related Work

Traditional SLR approaches often rely on specialized hardware—such as sensor-
equipped gloves—to capture detailed hand movements [27]. Although these sys-
tems provide precise measurements, they can disrupt the natural signing pro-
cess and omit crucial non-manual cues (e.g., facial expressions). Vision-based
solutions have thus become prominent, as they can track both manual and non-
manual components in real time using RGB or depth cameras [7, 18]. However,
deploying cameras in clinical settings introduces considerable privacy concerns,
and variable backgrounds or low-light conditions can further degrade perfor-
mance [16,19].

In response, emerging RADAR-based solutions have demonstrated remark-
able resilience to lighting and background fluctuations [11, 17]. Micro-Doppler
signatures, for instance, capture subtle kinematic patterns of the signer, thereby
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enabling gesture identification without requiring identifiable visual information
[13,25]. Nevertheless, most RADAR-oriented studies have concentrated on Amer-
ican Sign Language (ASL) or generic gestures, featuring limited lexicons and
modest datasets [1,19]. This gap underscores the need for broader, more diverse
data collections that support robust deep learning models in recognizing complex
sign repertoires across various sign languages, including LIS.

Recent efforts to gather multimodal data — incorporating RGB, depth, and
skeletal information — reflect the complexity of SL’s simultaneous manual and
non-manual elements, and require original solutions to perform data integration.
For instance, De Coster et al. [8] proposed a Video Transformer Network (VTN)
that combines body pose flow and hand-crop features from RGB frames, achiev-
ing competitive performance on the AUTSL dataset. Vahdani et al. [28] adopted
a multi-stream 3D CNN approach fusing RGB-D, motion, and skeleton data for
real-time American Sign Language (ASL) recognition, reporting over 92% accu-
racy on a newly collected ASL-100-RGBD dataset. However, privacy concerns
remain unresolved if visual data are processed off-site or stored without strict
protocols.

Integrating RADAR sensing into multimodal datasets can mitigate such con-
straints by reducing exposure of patient identities, while still retaining essential
motion cues [23]. Jhaung et al. [14], Debnath et al. [9], and Arab et al. [2] explored
Doppler and FMCW radars for non-contact gesture recognition, demonstrating
the viability of radar systems under diverse applications. However, RADAR-
based works generally focus on broad activity or hand-gesture classification,
rather than capturing the medical-domain lexicon of a sign language. Our ap-
proach builds upon these insights by leveraging high-resolution radar data to
form a privacy-preserving method tailored to SL patient-doctor communication.

3 Method

3.1 Dataset Description

LIS encompasses both manual (e.g., handshape, orientation, movement) and
non-manual (facial expressions, torso, mouth actions) components [3,29]. To ad-
dress patient-doctor interactions, a dataset was compiled featuring 126 LIS items
(100 health-related signs plus 26 letters of the alphabet), drawing on previous
LIS corpora guidelines, frequency vocabularies for spoken Italian [6], and incor-
porating medical and deaf-community insights [5,21]. Following the principles of
portability and non-invasiveness outlined in [4], multiple data modalities were
simultaneously collected: 13-fps three-antennas RADAR time-domain log-scale
data (with an Infineon XENSIV BGT60TR13C 60 GHz sensor); 720p 30-fps
RGB-D videos with face tracking points (with an Intel Realsense D455 camera)
and additional facial-expression data (through a Microsoft Kinect v1); and 25-fps
1080p depth images/points clouds (using a Stereolabs Zed 2 camera). A single
subject performed 205 repetitions per sign, totaling 25,830 sign instances [5,21].

Tab. 1 shows a comparative analysis of our dataset, with respect to exist-
ing datasets for SLR. Compared to prior RADAR data collections, our dataset
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Table 1. Summary of existing datasets, in terms of data modality, number of signs,
number of subjects and number of repetitions per sign. Notation: for RADAR-only
data modality, we report the sensor frequency; for “signs”, we report by default the
number of sign-language signs, as well as letters (“L”) or non-sign-language gestures
(“G”). ∗ Plus RGB-D and face tracking data.

Dataset Modality # signs # subj. # repet.

SpreadTheSign [13] RGB 281,672 Unspecified 1
Li et al., [18] RGB 2,000 3 119
Sincan et al. [26] RGB-D 226 4 43
Ravi et al. [24] RGB-D 200 10 10
Jing et sl. [15] RGB-D 100 42 15
Hassan et al. [12] RGB-D 10 2 22
Li et al. [17] 8.5 GHz 10 10 10
Lu et al. [19] 24 GHz 5 1 220
McCleary et al. [20] 24 GHz 4 5 250
Park et al. [22] 33 GHz 5L + 6G 10 82
Gurbuz et al. [11] 77 GHz 20 3 3
Wang et al. [30] 77 GHz 6G 1 200
Ours [21] 60 GHz∗ 100 + 26L 1 205

encompasses both a larger number of symbols and repetitions, yielding a sig-
nificantly larger dataset and a generally more complex classification task. Some
RGB and RGB-D datasets (in particular, SpreadTheSign [13] and Li et al. [18])
feature a comparable or larger number of words, but a significantly lower num-
ber of repetitions per word, which hinders their suitability for supervised learn-
ing. Additionally, in practical applications, they are subject to the exposure of
privacy-sensitive information.

3.2 Data Preprocessing

Our 60GHz RADAR sensor comprises one transmit antenna and three receive
antennas (RX), each recording time-domain signals in logarithmic scale. The
radar is configured with a 1 MHz sampling rate, a transmit power level of 31,
and an IF gain of 40 dB. Under these settings, the radar achieves a range res-
olution of 0.0312m, a maximum range of about 1.60 m, a maximum speed of
4.11 m/s, and a speed resolution of 0.0321 m/s. Each frame is acquired with a
repetition time of 0.077 s and a center frequency of 60.50GHz, ensuring fine-
grained motion capture suitable for sign language gestures. Radar data were
preprocessed through range and Doppler FFTs with zero-padding, windowing
(Blackman-Harris and Chebyshev for range and Doppler, respectively), mean
removal, and a spectral threshold of approximately −90 dB (adjustable between
−75 dB and −120 dB). An optional Moving Target Indication (MTI) filter further
reduces static background signals by zeroing out bins below a certain velocity
threshold. The resulting maps (both RDM and RDM-MTI) have a resolution of
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128×1024. See the supplementary video for five examples of recorded samples
with their correspondin RGB, depth, RDM, and RDM-MTI visualizations.

Signal synchronization was carried out across all sensors (RADAR, RGB-
D, depth/point clouds, face features) to ensure time-aligned frames across the
25,830 sign instances, each typically spanning 1–4 seconds. In total, over 6 million
radar maps (between RDM/RDM-MTI) are included, providing refined high-
resolution range and velocity features for subsequent autoencoder and trans-
former processing. Please note that our approach only employs RADAR time
data from the collected dataset: additional modalities are employed for compar-
ison with methods from the state of the art, or kept for future studies.

3.3 Model Architecture

We address the sign language recognition problem as a classification task. Given
the nature of RADAR data, we deal with video-like sequences, where each frame
represents an RDM or RDM-MTI map, thus requiring the model to capture both
spatial and temporal dynamics for effective classification.

Addressing this challenge directly with a single deep network can lead to
excessive model complexity and computational costs, particularly given the high
dimensionality and sequential nature of radar data. To mitigate these issues,
our approach decouples the problem into two distinct stages: frame compression
through an autoencoder and sequence classification with a transformer network.

Fig. 1. Overview of the end-to-end architecture of the proposed method.

Autoencoder for RADAR feature extraction. The proposed autoencoder
network is designed to learn a compact and meaningful representation of radar
data for sign language recognition. The fundamental objective of this autoen-
coder is to reconstruct the original input RADAR map, either RDM or RDM-
MTI, while distilling its essential features into a low-dimensional embedding,
which is used later as input to the transformer classifier. Due to the significant
differences in nature between RDM/RDM-MTI maps and natural images, we do
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not employ pretrained models; we thus design a custom CNN architecture5, with
symmetric encoder and decoder, each featuring 9 convolutional layers (grouped
into three blocks, for each feature map resolution, before downsampling). We
add residual connnections between the input and output of each block, to ease
gradient flow. The bottleneck of the model yields a 256-dimensional compressed
representation of the input signal.

Transformer classifier. Following the autoencoder pretraining, the classifica-
tion stage of the proposed approach is based on a transformer network, which
aims to effectively classify the sign language representations captured in the 256-
dimensional embeddings. The objective of this transformer-based classifier is to
leverage its powerful sequence modeling capabilities to capture patterns in the
RADAR signal, corresponding to the dynamic gestures of sign language. The
transformer architecture is particularly suited for this task due to its inherent
ability to model long-range dependencies and capture the sequential nature of
sign language gestures. Moreover, it naturally handles variable-length sequences,
which is necessary in our scenario due to the different lengths of the recorded
sign, ranging from 13 to 66 RDM/RDM-MTI frames.

Our approach utilizes a custom transformer design that processes the output
embeddings from the autoencoder. The autoencoder 1024-dimensional embed-
dings are first projected on a 64-dimensional space; in order to support the
combination of multiple RADAR modalities with the same model, whenever
multiple modalities are employed we fuse the autoencoder embeddings via con-
volutional layers by treating them as channels, before feeding them to the initial
projection layer. We then augment the sequence with a learnable class token
and positional embeddings to maintain temporal context, before being fed to
the transformer. The Transformer architecture employs six transformer layers,
with standard multi-head self-attention and eight attention heads per layer. At
the output layer of the transformer, we feed the resulting class token embed-
ding into a linear classification layer, estimating class logits for the dataset’s 126
classes and minimizing a standard cross-entropy loss.

3.4 Training procedure

We partition the dataset into 60% training, 20% validation, and 20% test sets. No
data augmentation is carried out. As mentioned above, we preliminarily train the
autoencoder model, in order to learn a good representation of RADAR signals
at a single time step, to simplify the following sequence classification task. We
train the model for 15 epochs with a batch size of 16, adopting the AdamW
optimizer with β1 = 0.9, β2 = 0.999 and a learning rate of 5 · 10−5.

The autoencoder is then frozen and used only to extract the embeddings from
the dataset samples. We train the transformer for 700 epochs, with a batch size
of 256 and a learning rate of 10−4, with an AdamW optimizer as above. Gradient
clipping is enforced at a maximum norm of 5, and a weight decay of 5 · 10−6 is
5 Please refer to the public source code for model details.
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applied to mitigate overfitting. All experiments are performed in float16 mixed
precision using 5×NVIDIA A100 40GB and 4×NVIDIA A6000 Ada 48GB. This
two-stage process alleviates GPU memory constraints by avoiding full end-to-end
training on raw data for every epoch.

The above hyperparameters are chosen based on the model’s performance on
the validation set.

4 Experimental Results

In this section, we present a thorough performance assessment of our approach,
comparing our results to state-of-the-art methods and justifying architectural
choices described above. We report results in terms of classification accuracy,
sensitivity, specificity, and F1-score.

Table 2 reports the comparison, on our dataset, of the proposed approach
with state-of-the-art solutions, drawn from both RGB/RGB-D approaches and
radar-based methods. Where the source code is not provided by the authors,
we wrote our own implementations, adhering to the reference description at
the best of our possibilities. Model selection is performed based on validation
performance, using default hyperparameters. For our approach, we report results
corresponding to different input modalities (single/multi-antenna, RDM only,
RDM-MTI only and the combination of RDM and RDM-MTI).

Table 2. Comparison with state-of-the-art methods in sign language recognition. The
“Modality” column indicates the primary sensor modality employed by the method.

Method Modality Acc. Sens. Spec. F1-score

De Coster et al. [8] RGB 88.4± 3.7 78.6± 3.4 98.2± 3.5 79.7± 3.9
Vahdani [28] RGB-D 84.1± 2.9 83.1± 4.1 85.1± 2.1 84.2± 2.2
ResNet(2+1)d RGB-D 74.6± 3.9 66.4± 3.1 82.8± 3.0 59.9± 3.3

Jhaung et al. [14] RADAR 71.9± 3.3 61.9± 2.3 81.9± 3.4 69.2± 2.9
Debnath et al. [9] RADAR 79.3± 3.5 83.3± 3.3 75.3± 3.1 79.3± 3.9
Arab et al. [2] RADAR 81.0± 3.4 65.9± 3.1 96.1± 2.8 29.6± 2.9

Ours

RDM 88.3± 1.1 79.9± 0.8 96.7± 0.9 86.6± 1.2
3×RDM 91.7± 0.6 86.9± 0.6 96.5± 0.7 87.5± 0.5

MTI 84.9± 0.9 73.9± 0.7 95.9± 0.8 80.0± 0.8
3×MTI 86.1± 0.6 77.6± 0.5 94.6± 0.5 83.3± 0.7

RDM + MTI 91.4± 0.6 84.1± 0.5 98.7± 0.5 86.9± 0.5
3×RDM + 3×MTI 93.6± 0.5 87.9± 0.5 99.3± 0.6 87.7± 0.5

Our approach achieves the best performance when employing three antenna
streams and both RDM and RDM-MTI channels, reflecting the advantage of
integrating multiple radar perspectives and emphasizing moving-target informa-
tion. Notably, even though radar systems typically exhibit lower performance
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compared to RGB-based systems in prior work, our solution achieves compa-
rable, if not better results on several metrics, demonstrating the viability of
privacy-preserving, radar-centric solutions for sign language recognition.

We also evaluate the effectiveness of the proposed autoencoding approach for
feature extraction, across two different aspects. First, we compare the proposed
autoencoder backbone to other popular architectures, i.e., AlexNet and ResNet-
18. We do not test more powerful architectures, due to the relative simplicity and
lack of complex and varying patterns of RDM images. Second, we examine the
effect of fine-tuning the autoencoder while training the transformer classifier (we
remind that, in our default configuration, the autoencoder is frozen during trans-
former training). Tab. 3 shows the results of this analysis. In all cases, keeping the
autoencoder frozen improves performance, due to an increased overfitting while
training the transformer (as also empirically observed in the training and val-
idation loss curves). Moreover, the proposed autoencoder architecture achieves
higher performance than other networks, which may be explained, as mentioned,
to the lack of complex features in the input data, enabling a simpler model to
better fit the data distribution.

Table 3. Comparison of autoencoder architectures and training strategies.

Backbone Acc. Sens. Spec. F1-score

AlexNet 61.4± 1.6 43.9± 1.9 78.9± 1.6 54.1± 1.3
↪→ Frozen 73.9± 1.7 68.8± 2.0 79.0± 2.1 66.6± 1.8

ResNet-18 84.3± 0.4 76.2± 0.4 92.4± 0.6 78.2± 0.6
↪→ Frozen 88.1± 1.2 81.7± 0.6 94.5± 0.9 79.9± 0.5

Ours 91.9± 0.6 86.1± 0.5 97.4± 0.6 85.5± 0.7
↪→ Frozen 93.6± 0.5 87.9± 0.5 99.3± 0.6 87.7± 0.5

5 Conclusion

In this paper, we have presented a privacy-preserving, RADAR-based solution
for SLR in a medical context, using a multimodal dataset of 126 signed items
(100 medically relevant terms and 26 letters). Our two-stage pipeline —involving
a convolutional autoencoder backbone followed by a Transformer classifier —
demonstrates state-of-the-art performance, underlining the feasibility of non-
visual sensing methods for sign language interpretation in sensitive healthcare
environments. In the future, we intend to integrate face and lip-joint tracking into
the model pipeline, allowing the system to disambiguate visually similar signs
based on subtle mouth movements. Such enhancements can prove especially
valuable when indicating specific body parts or health conditions that share
comparable manual gestures; moreover, techniques such as landmark extraction
would maintain the same privacy-preserving properties as the pure RADAR-base
system.
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