MICCAI " RISIIEY VEISION 15:dvalldRIE O SPHING

Targeted False Positive Synthesis via
Detector-guided Adversarial Diffusion Attacker
for Robust Polyp Detection

Quan Zhou'!, Gan Luo™, Qiang Hu®™?2 Qingyong Zhang', Jinhua Zhang?,
Yinjiao Tian®, Qiang Li?, and Zhiwei Wang®9?2

! Wuhan University of Technology
2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science
and Technology
3 Changzhou United lmaging Healthcare Surgical Technology Co., Ltd.
{zhouquan910, ganluo}@whut.edu.cn, {huqiang77, zwwang}@hust.edu.cn

Abstract. Polyp detection is crucial for colorectal cancer screening, yet
existing models are limited by the scale and diversity of available data.
While generative models show promise for data augmentation, current
methods mainly focus on enhancing polyp diversity, often overlooking
the critical issue of false positives. In this paper, we address this gap
by proposing an adversarial diffusion framework to synthesize high-value
false positives. The extensive variability of negative backgrounds presents
a significant challenge in false positive synthesis. To overcome this, we
introduce two key innovations: First, we design a regional noise match-
ing strategy to construct a negative synthesis space using polyp detection
datasets. This strategy trains a negative-centric diffusion model by mask-
ing polyp regions, ensuring the model focuses exclusively on learning
diverse background patterns. Second, we introduce the Detector-guided
Adversarial Diffusion Attacker (DADA) module, which perturbs the neg-
ative synthesis process to disrupt a pre-trained detector’s decision, guid-
ing the negative-centric diffusion model to generate high-value, detector-
confusing false positives instead of low-value, ordinary backgrounds. Our
approach is the first to apply adversarial diffusion to lesion detection, es-
tablishing a new paradigm for targeted false positive synthesis and paving
the way for more reliable clinical applications in colorectal cancer screen-
ing. Extensive results on public and in-house datasets verify the superior-
ity of our method over the current state-of-the-arts, with our synthesized
data improving the detectors by at least 2.6% and 2.7% in F1-score, re-
spectively, over the baselines. Codes are at https://github.com/Huster-
Hq/DADA.
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1 Introduction

Colorectal cancer (CRC) remains one of the most prevalent and deadly malig-
nancies worldwide, presenting significant challenges to global public health [1].
Early and accurate screening of colonic polyps during colonoscopy is critical
in reducing the morbidity and mortality associated with CRC. However, polyp
screening is often hindered by the variability in clinicians’ skills and experience
levels, which underscores the urgent need for automatic polyp detection.

Recent advancements in polyp detection have primarily focused on innova-
tions in network architectures, such as Transformer-based [2], YOLO-based [3],
R-CNN-based [4,5]. Further progress has been made by leveraging temporal rela-
tionships to improve detection accuracy, utilizing techniques like 3D models [6],
optical flow correlations [7], and tracking modules [8]. Despite these advances,
polyp detection still faces substantial challenges due to the variability in polyp
morphology and the complex, dynamic nature of the colon environment. While
certain methods address specific issues, such as reflection artifacts [9,10] and size
variability [11], the lack of comprehensive and diverse datasets remains a major
barrier to further progress [12].

In recent years, breakthroughs in generative models, particularly denoising
diffusion probabilistic models (DDPMs), have provided new opportunities to
enhance object detection by generating challenging, high-value training data.
For example, DS-GAN [13] has proven effective in generating realistic small tar-
gets, addressing the challenges of detecting small objects. In polyp detection,
Qadir et al. [14] introduced a conditional GAN-based framework for synthesiz-
ing synthetic polyp images, improving both detection and segmentation accu-
racy. Similarly, Adjei et al. [12] integrated a modified pix2pix framework with
traditional augmentation techniques to boost model performance. More recently,
ControlPolypNet [15] employed user-controllable inputs to generate clinically rel-
evant polyp images, expanding datasets and improving segmentation outcomes.

However, these methods primarily focus on generating positive samples, with
relatively little attention to the issue of false positives. In a 15- to 20-minute
polyp screening, negative samples significantly outnumber positive ones, with
current systems producing an average of five false positives per minute [16].
This excessive number of false positives can disrupt clinicians’ focus [17], a phe-
nomenon known as the ‘crying wolf effect’. It not only increases the workload of
clinicians but also introduces the risk of unnecessary medical interventions and
costly diagnostic errors [18]. Furthermore, individual variability and differences
in bowel preparation result in highly complex colon environments, further exac-
erbating the false positive problem and making reliable detection more difficult.

In this paper, we address a critical gap for the first time by proposing a novel
method for targeted false positive generation. Our approach seeks to reduce false
positives by generating challenging negative training samples that mimic polyp-
like features, which can confuse the detector. Specifically, our method consists
of two key components: a background-only DDPM as the base negative genera-
tor and a Detector-guided Adversarial Diffusion Attacker (DADA) module. The
base negative generator is trained on off-the-shelf polyp detection datasets but
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employs a regional noise matching strategy to decouple the polyp regions from
the DDPM’s training. This strategy ensures that the generator focuses solely
on learning diverse non-polyp background visual patterns to avoid leak of polyp
information into the subsequent generation of polyp-like interferences. During
the denoising process, the DADA module, inspired by adversarial attack prin-
ciples, establishes a gradient backpropagation pathway to enable the injection
of adversarial perturbations into the denoising process, effectively confusing the
detector’s decision boundary and guiding the generation of general low-value
negatives into high-value false positive samples.
In summary, our major contributions are as follows:

— We propose a novel image synthesis method that integrates diffusion models
with adversarial attacks, focusing on generating high-value negative samples
capable of effectively misleading polyp detectors.

— We propose a background-only denoiser learning to generate pure negative
patterns from off-the-shelf polyp detection datasets, and a Detector-guided
Adversarial Diffusion Attacker (DADA) module guiding the denoising to
high-value realistic false positive ones by attacking a well-trained detector.

— Extensive experiments demonstrate that our method achieves state-of-the-
art performance on both the public Kvasir and our in-house dataset, with
improvements of at least 2.6% and 2.7% in F1l-score, respectively, over the
baselines.

2 Method

Fig. 1 shows the overall of our adversarial diffusion framework, which mainly con-
sists of three key modules: (1) a well-trained polyp detector, (2) a background-
only denoiser (BG-De), and (3) a detector-guided adversarial diffusion attacker
(DADA). During inference, the iterative process alternates between denoising
through BG-De, evaluating their potential for false positive induction via the
detector’s prediction, and applying DADA-computed adversarial perturbations
to confuse the detector in a pre-defined region of interest.

2.1 Background-only Denoiser as Base Negative Generator using
Regional Noise Matching

BG-De is a variant of the Diffusion Probabilistic Model (DDPM) [19], designed
to selectively denoise background regions. During the forward diffusion process,
BG-De adds Gaussian noise to an image zg over t time steps: z; = /azxg +
V1 — ey, , where o = HE:l «;, and aq.7 are hyperparameters controlling the
signal-to-noise ratio, and €,;, ~ N(0,1). BG-De is trained to reverse this pro-
cess by predicting the noise €g(x¢,t), enabling the reconstruction of the image.
Unlike the original DDPM, BG-De uses regional masking to focus learning on
background regions. For a polyp detection training sample {x, m 4}, where mg
is a binarized mask indicating the ground truth (GT) bounding boxes of polyps
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DADA: Detector-guided Adversarial Diffusion Attacker
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Fig. 1. The inference pipeline consists of three key modules: the background-only de-
noiser (BG-De), a well-trained polyp detector (Detr), and the detector-guided adver-
sarial diffusion attacker (DADA). Inpainting is used to generate new negative samples
in a user-specified region of the real image. BG-De samples from the pure negative dis-
tribution, while DADA guides the sampling toward visual patterns that elicit a positive
response from the detector. Note that the training of both BG-De and the detector is
not shown in this figure.

(with 1 assigned to pixels inside the bounding boxes and 0 outside), the loss
function is modified as:

Lpag = Ewo,e,t”(l - mgtb) © (efEt - 60('Tt7t)) H2 (1)

This approach allows BG-De to only model the background (negative) sample
distribution, even when polyp samples are present. Notably, the training sets
consist solely of polyp images and their corresponding GT bounding boxes, which
are standard in detection tasks and do not require extra data collection efforts.

2.2 Detector-guided Adversarial Diffusion Attacker Guiding
Ordinary Backgrounds to High-value False Positives

Building on the trained BG-De, we progressively denoise an initialized noise map
to synthesize realistic negative endoscopic images xy. The denoising process is
formulated as:

Ti—1 = po(we,t) + \/5767 (2)

where pg(z,t) = \/1aﬁ Ty — \}%69(1},15)) is the sampled mean value map by

BG-De, and ¢ ~ N (0,1) is for reparameterization.
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However, the generated images are typically ordinary and insufficient to con-
fuse the detector, limiting their training value. To address this, we introduce
a perturbation 7; at each denoising step to modify the sampling trajectory
and guide BG-De toward generating images that exceed the detector’s decision
boundary. The denoising process becomes:

i1 = po(xs + ne, t) + A/ Pre, (3)

where 7, is a trainable variable initialized as a zero matrix.

Inspired by adversarial attack methods [20,21], we propose the DADA mod-
ule to optimize the perturbation by targeting the well-trained detector, aiming
to induce false positives in a user-defined bounding box b. This generates chal-
lenging negative samples with misleading interference features. Specifically, we
feed z;_; into the detector, treating b as an “illusory” ground truth (GT) box,
and calculate the detection loss as:

Liet = £cls.(laﬁcr(b)) + ‘Cloc.(bv Ba(b))7 (4)

where L. and Ly, are classification and localization losses, respectively. p, (p)
and Ea(b) represent the predicted polyp-class probability and bounding box for
the “illusory” GT box b. The prediction-GT assignment is related to the de-
tector, e.g. Hungarian algorithm [22] in DETR [23]. The perturbation is then
optimized by minimizing the detection loss, and the direction of 7; is updated
via backpropagated gradients:

ne =mn — o sgn(Vn, Laet), (5)

where sgn(-) is the signum function and « is a small step size. By integrating
DADA with BG-De, perturbations at each denoising step guide the generation of
xg, creating high-value negative samples that significantly confuse the detector.

2.3 Inpainting Strategy to Maintain Context Consistency

To enhance the fidelity of the generated image regarding anatomical structures,
we use an inpainting strategy that incorporates the real image context to guide
local false positive generation. Specifically, we apply “attack & inpaint” within
the pre-defined region, while the rest of the regions are kept as the noisy version
of the real image. We define the inpainting region as the same as b described in
the Sec. 2.2. The final denoising process is formulated as follows:

21 = po (1 —mp) @ 27 +mp @ (3 + 1), t) + \/ Bee, (6)

where my, is a binarized map, with 1 assigned to pixels within b and 0 outside.
This strategy integrates DADA with BG-De, introducing perturbations at each
denoising step to generate xg, which maximizes detector confusion while pre-
serving visual integrity. At last, our method can generate high-value negative
samples in a localized region of the real image while maintaining overall context,
as shown in Fig. 2.
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Table 1. Quantitative comparison on Kvasir and our private dataset. The best perfor-
mance is marked in bold.

Backbone Methods Kvasir In-house
P R F1 P R F1

baseline 0.941 0.940 0.941 0.894 0.813 0.852
APGD [26] 0.952 0.942 0.947 0.905 0.815 0.858
FAB [27] 0.947 0.944 0.945 0.901 0.817 0.857

YOLO [25] Repaint [28] 0.951 0.946 0.948 0.911 0.823 0.865
LaMa [29] 0.953 0.947 0.950 0.915 0.819 0.864
Ours 0.983 0.956 0.969 0.942 0.845 0.891
baseline 0.950 0.856 0.901 0.873 0.574 0.693
APGD [26] 0.957 0.861 0.906 0.879 0.576 0.696

DETR [23] FAB [27] 0.955 0.858 0.904 0.876 0.577 0.696

Repaint [28] 0.962 0.862 0.909 0.885 0.582 0.702
LaMa [29] 0.963 0.859 0.908 0.886 0.585 0.705
Ours 0.980 0.880 0.927 0.918 0.592 0.720

3 Experiments

3.1 Datasets and Evaluation Metrics

We conduct experiments on two datasets: Kvasir [24] and an in-house dataset.
The Kvasir dataset consists of 1,000 polyp images, where we generate GT boxes
from the provided GT masks. The in-house dataset includes 1,516 polyp images
with GT boxes carefully labeled by two experienced endoscopists from a local
hospital. For both datasets, we randomly split them into training, validation,
and test sets with an 8 : 1 : 1 ratio. We evaluate detection performance using
Precision (P), Recall (R), and F1-score (F1).

3.2 Implementation Details

For BG-De, we implement the model architecture based on the conventional
DDPM [19] and train it for 320,000 iterations on two RTX 4090 GPUs with
a batch size of 20. We use YOLO [25] and DETR [23] as detection models,
training them according to their official settings. We split the training set into
two folds, alternately training BG-De on one while augmenting the other. For
BG-De inference, we set the denoising steps to 1,000, the final image size to
256 x 256, and the perturbation step size « in Eq. (5) to 0.003.

3.3 Comparison with State-of-the-arts

We compare our method with four state-of-the-art (SOTA) methods on both
Kvasir and the in-house dataset: two adversarial attack methods (APGD [26],
FAB [27]) and two inpainting methods (Repaint [28], LaMa [29]). To ensure
fairness, we implement all methods as described in Sec. 3.2, augment each im-
age once, and train both YOLO and DETR with the original and augmented
datasets. Baselines are trained only on the original training set.
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Fig. 2. Visualizations of synthesis images by different methods. The white bounding
boxes indicate pre-defined attack/inpainting regions. For clarity, we visualize difference
maps D between synthesis images and original images.

Table 2. Ablation study of two key components, i.e., BG-De. and DADA.

Backbone Components Kvasir In-house
DADA BG-De P R F1 P R F1
X X 0936 0939 0.937 0.891 0.812 0.850

YOLO v X 0933 0930 0.931 0.882 0.801 0.840
X v 0950 0945 0.947 0.902 0.818 0.858
v v/ 0.983 0.956 0.969 0.942 0.845 0.891
X X 0945 0.853 0.897 0.870 0.571 0.689

DETR v X 0945 0843 0.891 0.865 0.565 0.684
X v 0952 0.861 0.904 0.877 0.581 0.699
v v/ 0.980 0.880 0.927 0.918 0.592 0.720

As shown in Table 1, our method significantly improves the performance
of both YOLO and DETR across the two datasets, outperforming all baselines.
This improvement mainly stems from our methods ability to generate high-value
negative samples. As shown in Fig. 2, our method generates challenging negative
samples such as circular lumens, colonic folds, and specular highlights, which are
likely to mislead the baseline model into producing false positives. Using these
samples as additional training data greatly enhances the performance, especially
in terms of precision. In contrast, methods like APGD and FAB generate sub-
tle, noise-like perturbations without clear semantics, while Repaint and LaMa
produce ordinary backgrounds that offer limited benefits.

3.4 Ablation Study

To verify the effectiveness of the two key components, i.e., BG-De and DADA,
we train three variants of YOLO and DETR by disabling BG-De and/or DADA.
The comparison results of these methods on Kvasir and our in-house dataset are
listed in Table 2. From the first two rows of each detector, we observe that dis-
abling BG-De results in performance degradation compared to their baselines
in Table 1. This is primarily because the generator randomly generates both
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Table 3. Ablation on perturbation step size «. T and | denote ‘higher is better’ and
‘lower is better’, respectively.

o Kvasir In-house

FID | FPGR 1 F11 FID | FPGR 1t F11
0.001 4.62 0.177 0.959 2.78 0.216 0.868
0.002 5.97 0.681 0.967 3.12 0.645 0.887
0.003 8.23 0.885 0.969 3.53 0.849 0.891
0.004 9.64 0.924 0.963 3.93 0.934 0.861
0.005 10.75 0.951 0.954 4.20 0.965 0.859

background and polyps, and treating all generated samples as backgrounds in-
troduces label noise and compromises detector training. As shown in the third
row of each detector, introducing BG-De alone provides limited performance im-
provement, which is mainly because most of the negative samples generated by
BG-De are of low-value to the detectors. Finally, when DADA and BG-De are
jointly utilized, both YOLO and DETR achieve the best performance with sig-
nificant improvements, which demonstrates that DADA and BG-De are highly
complementary and must be used in conjunction.

3.5 Hyperparameter Choices

To explore the impact of different step sizes a in Eq. (5) on detector perfor-
mance, we conduct a hyperparameter search using YOLO on both the Kvasir
and in-house datasets. We introduce two additional metrics: Fréchet Inception
Distance (FID) and False Positive Generation Rate (FPGR). FID measures the
distribution discrepancy between generated and real images, while FPGR quan-
tifies the proportion of generated images causing false positives. As shown in
Table 3, increasing « results in higher FPGR but lower FID, as larger « val-
ues introduce more noise into generated images. Based on these results, we set
a = 0.003, which yields the best detector performance with an F1-score of 0.969
on Kvasir and 0.891 on the in-house dataset.

4 Conclusion

In this work, we introduce a novel approach for generating high-value false posi-
tive samples to address the challenge of limited data diversity in polyp detection
systems. By integrating a feedback mechanism that targets the detector within
the denoising process of a diffusion model, we are able to synthesize realistic,
challenging negative samples. This approach, which is the first of its kind in
the context of polyp detection, allows for a significant improvement in detector
performance by augmenting the training set with these strategically generated
false positives. Extensive experiments on both the public Kvasir dataset and our
in-house dataset demonstrate that our method enables detectors like YOLO and
DETR to achieve state-of-the-art results. Our work contributes a new paradigm
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for data synthesis in clinical applications, particularly in colorectal cancer screen-
ing, where diverse training data is critical for improving detection accuracy and
reducing false positives.
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