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Abstract. Interactive segmentation tools, such as SAM2, have shown
strong performance in reducing annotation effort in natural images. How-
ever, unlike natural images, ultrasound images and videos often lack
well-defined structure boundaries, which significantly degrade the perfor-
mance of region-based point prompts in SAM models. To address these
limitations, we introduce the Segment Anything Model 2 for UltraSound
Annotation (SAMUSA). SAMUSA is based on SAM2 and introduces a
new prompt strategy with boundary and temporal points, along with a
novel boundary loss function, enabling the model to more efficiently seg-
ment structures with poorly defined boundaries, such as liver masses. We
integrated SAMUSA as a 3D Slicer plugin, where it can be used for US
videos and 3D US volumes segmentation. We present a prospective user
study involving 6 participants (3 surgeons and 3 radiographers), which
showed an average 34.1% annotation time reduction for image liver mass
segmentation.
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1 Introduction and Background

Ultrasound (US) is a major imaging modality in medical diagnosis and image-
guided surgery, however, it presents challenges due to noise, operator-dependence,
and imaging artifacts. Deep learning models, and especially ultrasound segmen-
tation models have been proposed to assist image interpretation, structure recog-
nition, and measurement. State-of-the-art models are trained on manual segmen-
tations from clinical experts, however, this is often costly and time-consuming,
presenting an important clinical translation barrier. Interactive, AI-assisted seg-
mentation models, such as SAM [7] have the potential to reduce this barrier
by generating segmentation masks from simple user interactions (prompts), like
⋆ These authors contributed equally to this work.
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Fig. 1: Comparison of lesion segmentation with point prompts: SAMUSA (a)
uses boundary points, compared to SAM2 (b), which uses region-based points
with two labels (positive/inside, and negative/outside).

bounding boxes or point clicks. SAM was originally proposed for non-medical
image segmentation, however, it has been shown to generalize poorly to medical
image domains. Recent works such as MedSAM [10], and SAMed [20] overcome
this limit with domain-specific fine-tuning. Recently, SAM2 [15] was proposed;
an extension of SAM to handle video data using temporal segmentation prop-
agation. Several works propose to fine-tune SAM2 to handle medical imaging
modalities, including CT by treating slices along a principal axis as video frames
[11, 19, 22]. SAM2 has not been considered explicitly for US data in the literature.

We propose SAMUSA (Segment Anything Model 2 for US Annotation), an
AI-assisted annotation tool that extends SAM2 for interactive AI-assisted US
segmentation. Our main scientific contribution involves identifying and address-
ing practical limitations in its prompting mechanism. Specifically, SAM, SAM2,
and their previous adaptations for medical image segmentation use point-click
prompts, termed region-based points, involving clicking points that are either
outside or inside the structure of interest (Fig. 1(b)). While this approach works
well for structures with clear boundaries, US images often have ambiguous
boundaries. In these cases, segmentation depends on the user’s clinical knowl-
edge and contextual cues from other video frames. We hypothesize that a dif-
ferent type of prompt—boundary point prompts (Fig. 1(a)), where users click
on where they believe the structure’s boundary lies—is more effective than re-
gion point prompts because it directly encodes the user’s mental decision about
the boundary. Additionally, we introduce temporal prompts to mitigate mis-
classification issues in SAM2 and reduce inference time when processing long
video sections where the structure is not visible. We experimentally validate our
work in a user study involving clinicians and medical image annotation experts.
The study shows that, when fine-tuned on US data, SAM2 can work well in cer-
tain scenarios, however, it performs significantly worse in zero-shot applications
for hard-to-segment structures (liver masses), compared to SAMUSA.
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Table 1: Models were trained on public datasets with static US images (sizes
given in terms of number of images), and US videos (sizes given in terms of
number of videos). LV - left ventricle, LA - left atrium, Myo. - myocardium.

Data Type Dataset Train size Val size Test size Segmented structure(s)

Static 2D Image

Liver [3] 514 73 148 Liver
FASS [1] 1588 - - Fetal abdominal

BUSBRA [5] 1312 187 376 Breast
TG3K [6] 3585 - - Thyroid gland
TN3K [6] 2303 575 614 Thyroid nodule
Nerve[13] 2091 232 - Brachial Plexus
OTU [21] 1028 146 295 Ovarian tumors

STMUS NDA [12] - - 3484 Muscle
Trusted [14] - - 3697 Kidney parenchyma

IUSLL (private) - - 35 573 Liver mass

Video

SegThy [8] 32 - - Thyroid
CAMUS [9] 700 100 200 Myo.,LV,LA

Thyroid cine clip [17] 134 19 39 Thyroid
Trusted 46 - 13 Kidney parenchyma

IUSLL (private) - - 426 Liver mass

2 Methods

2.1 SAMUSA overview

SAMUSA builds upon the neural network architecture introduced by SAM2 [15],
retaining its key components: the Image Encoder, Prompt Encoder, Memory
Mechanism, and Mask Decoder. SAMUSA introduces two novel prompt mech-
anisms: boundary and temporal points. The first mechanism, called bound-
ary points prompts, replaces the region-based points prompts used in SAM2.
These boundary points are integrated into the loss functions as LSAMUSA =
LSAM2 + λLboundary, where LSAMUSA represents the loss function used to train
our model, combining the original SAM2 loss, LSAM2, with our novel bound-
ary loss, Lboundary. The weighting factor λ = 2 controls the contribution of the
boundary loss to the overall objective.

2.2 Boundary prompt loss and training point sampling

Our boundary prompt loss is inspired by Roth et al. [16], which penalizes a
boundary point being located far from the border of a predicted segmentation
mask M . The loss is computed in three steps. First, M is blurred using mean
filtering (7×7 kernels), repeated N times (we use a default of N = 20), generating
a smoothed normalized mask GI(x, y). Second, a heatmap GP (x, y) is generated
for the boundary points, created by applying a Gaussian kernel centered at
each boundary point (σ = 2). The final heatmap is obtained by summing the
Gaussians of all boundary points. The resulting loss is then computed as:

Lboundary = exp

(
−
∑
x,y

GI(x, y) ·GP (x, y)

)
(1)
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During training, we propose the following mechanism to sample bound-
ary points from batches of training images, with their associated segmentation
masks. Boundary points are generated in a manner inspired by Dupont et al.
[2]. First, we choose a random point on the mask’s boundary associated with the
training image. We then select a second point on the boundary furthest from
the first point. To simulate the effect of a user adding boundary points to re-
fine the segmentation, additional boundary points are iteratively sampled (those
furthest from the predicted segmentation boundary). To improve variability, 2
images per batch are randomly chosen for corrections, with a random number
of sampled points varying from 2 to 10.

2.3 Temporal points

In ultrasound videos, a structure can come in and out of view as the operator
sweeps the probe over the structure. The visual appearance of a structure during
a probe sweep can vary significantly, often cause failures in SAM2’s classification
head (failure to recognize frames for which the structure is visible). To resolve
this issue, we introduce temporal prompts, where a user defines start/end visi-
bility time windows. We use these temporal prompts in SAMUSA for the dual
purpose of additional robustness (by bypassing the classification head of the
mask decoder), and also for faster inference, where we do not perform mask
propagation in frames beyond start/end times.

2.4 Datasets and implementation details

We sourced various public US image and video datasets as described in Table
1. These datasets were combined into a training, validation, and test super-
dataset, using the splits as proposed by each public dataset. In addition, a
private retrospective video dataset was collected from our partner Humanitas
Research hospital, comprising anonymous intra-operative US videos from 59 pa-
tients undergoing open liver lesion resection. This dataset was used only for
testing purposes and is referred to as IUSLL (Intra-operative US Liver Lesions).
We trained SAMUSA and baseline methods on the same datasets, naming the
retrained SAM2 model SAM2-US. Before the user video study, we found that
SAM2-US model was not a practical baseline due to the excessive time required
for mask propagation in frames where the structure was not visible, and frequent
classification errors. To address this, we incorporated the temporal point mecha-
nism, referring to the updated baseline as SAM2-USTP. All models were trained
using one Nvidia A100, Python 3.10, and PyTorch 2.1. For the user study, we
programmed a simple user interface as a 3D Slicer [4] plugin (version 2.6.2).

3 Experimental validation

3.1 User studies

Cohort and metrics. We recruited six users in this study, three were abdominal
surgeons (Users 1-3), and three were radiographers and professional medical
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Table 2: Comparison of mean per-image segmentation time and Dice scores be-
tween SAMUSA and SAM2-US in image user evaluation for the supervised
Trusted and the zero-shot IUSLL dataset. Statistically significant best values
are in bold

Task User SAM2-US SAMUSA Intra-user P-value Inter-user P-value

Time (s) Dice Time (s) Dice Time Dice Time Dice

Supervised
(Trusted)

1 3.99 0.94 4.08 0.94 0.56 0.85

0.33 0.092
2 4.1 0.94 5.7 0.96 4.7× 10−5 0.26
3 4.14 0.94 4.32 0.96 0.54 0.043
4 10.51 0.93 8.36 0.93 2.1× 10−4 0.88
5 6.31 0.95 5.68 0.95 0.24 1.0
6 16 0.94 8.42 0.95 3.2× 10−12 0.04

Zero-shot
(IUSLL)

1 6.77 0.81 4.82 0.83 1.0× 10−4 0.68

4.4× 10−3 0.57
2 14.06 0.80 7.1 0.81 6.3× 10−10 0.98
3 14.8 0.83 9.9 0.81 1.7× 10−7 0.48
4 25.31 0.82 15.52 0.83 1.0× 10−5 0.82
5 13.15 0.84 9.7 0.84 2.2× 10−8 0.86
6 26.29 0.84 18.86 0.84 5.4× 10−5 0.93

image annotators (Users 4-6, each with over 7 years of experience in medical
image analysis). Two user studies were conducted: Image segmentation, which
involved segmenting kidneys from the Trusted dataset and liver lesions from
IUSLL in individual US images, and Video segmentation, which involved the
same structures and datasets in US videos. To effectively introduce users to the
annotation tools, we provided user training, an annotation protocol, and various
sample images and videos distinct from the final test set, used in a warm-up
period. We evaluated both methods using time and Dice score metrics. Reference
segmentations, from which a user’s Dice scores were assessed, were established
from all users’ segmentations using the STAPLE algorithm [18].

Image segmentation. Each user performed two tasks: (1) kidney segmentation
using images and (2) liver lesion segmentation. For each task, 100 random test
images were selected, ensuring an equal number of images per patient to reduce
bias. Users annotated each image using two models: SAMUSA and SAM2-US. To
minimize familiarity bias, half of the test images were segmented using SAMUSA
first, while the other half were segmented with SAM2-US first. Due to distribu-
tion non-normality, intra-user time and Dice difference were statistically assessed
with paired Wilcoxon signed-rank tests. Inter-user average time and Dice differ-
ences were assessed with a paired t-test. The average time to segment each image,
average DICE scores, and p-values are shown in Table 2.

In the zero-shot task, there was a significant statistical difference favoring
SAMUSA. Our model outperforms SAM2-US for all users, being 34.1% faster
on average. In the supervised task, there was no statistical difference in the time
difference for all users. Dice scores show strong agreement among users in the
supervised setting, but less agreement in the zero-shot setting, as lesions can
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Table 3: Comparison of mean per-video segmentation time and Dice scores be-
tween SAMUSA and SAM2-USTP in video user evaluation for the supervised
Trusted and the zero-shot IUSLL dataset. Statistically significant best values
are in bold

Task User SAM2-USTP SAMUSA Intra-user P-value Inter-user P-value

Time (s) Dice Time (s) Dice Time Dice Time Dice

Supervised
(Trusted)

User 1 80.1 0.74 80.1 0.74 1 1

0.14 0.33
User 2 100.8 0.90 119.1 0.91 0.92 0.62
User 3 73.1 0.92 56.4 0.93 0.23 0.49
User 4 212.9 0.88 188.7 0.93 0.55 0.02
User 5 269.9 0.91 183.9 0.92 0.037 0.37
User 6 260.2 0.95 219.9 0.93 0.76 0.23

Zero-shot
(IUSLL)

User 1 – – – – – –

0.031 0.84
User 2 113.9 0.75 54.7 0.71 0.084 0.0059
User 3 117.6 0.76 89.1 0.74 0.92 0.62
User 4 260.3 0.80 247.1 0.87 0.69 0.19
User 5 157.8 0.83 139.7 0.83 0.37 0.70
User 6 191.9 0.84 174.9 0.81 0.92 0.28

be more difficult and ambiguous to segment. However, there was no statistical
difference between the models. Users also filled out questionnaires and rated the
SAMUSA model more favorably, with an average score of 4.5/5 compared to
3.0/5 for SAM2-US (higher is better). SAMUSA required less cognitive load,
rated on average 1.8/5 compared to 3.5/5 for SAM2-US (lower is better).

Video evaluation To evaluate SAMUSA’s performance presented in Table
3, we conducted a controlled video user study where we selected 10 random
kidney videos and 10 random liver lesion videos. The mean number of images
per video for Trusted was 707.2 and 159.9 for IUSLL. In this setting, they had
to first define the start and end points with temporal prompts and keep these
points when switching models. Users selected a frame in a video, segmented it,
propagated the mask through the remaining frames, and corrected the prediction
if necessary. The user evaluation results in Table 3 suggest that while SAMUSA
showed slight advantages in mean time for both tasks, statistical significance
was not found, likely due to the small sample size. However, we demonstrate
significant inter-user time saving, favoring SAMUSA in the liver lesion task.
Users also filled out questionnaires and rated the SAMUSA model higher, giving
it a score of 4.1/5 compared to 3/5 for SAM2-USTP. They also reported that
SAMUSA required less cognitive load (the less the better), rating it on average
2.3/5 compared to 3/5 for SAM2-USTP. Finally, users have noted that SAMUSA
is more robust than SAM2-USTP. When using positive and negative points,
segmentation can be less precise, as these points continuously add or remove
regions without explicitly defining the object’s border. In contrast, boundary
points directly delineate the structure, leading to more accurate segmentation.



SAMUSA: Segment Anything Model 2 for UltraSound Annotation 7

(a) Supervised (b) Zero shot

Fig. 2: Mean IoU comparison over 5 datasets when SAMUSA and SAM2-US are
supervised (a) and over 3 datasets in zero-shot (b)

Table 4: Average Dice/IoU over 10 points on images. (*) denotes models tested
in zero-shot setting and (+) denotes models tested in supervised setting

Dataset SAM* SAM2* SAM2-US* SAMUSA* SAM2-US+ SAMUSA+

Liver 0.50/0.39 0.71/0.59 – – 0.93/0.87 0.95/0.91
BUSBRA 0.76/0.66 0.91/0.85 – – 0.95/0.91 0.96/0.92

TN3K 0.71/0.59 0.87/0.79 – – 0.94/0.89 0.95/0.92
OTU 0.52/0.40 0.86/0.78 – – 0.95/0.91 0.97/0.94

Trusted 0.34/0.22 0.80/0.70 0.81/0.70 0.91/0.87 0.94/0.89 0.95/0.91
STMUS 0.45/0.60 0.81/0.71 0.82/0.71 0.90/0.83 – –
IUSLL 0.41/0.54 0.82/0.71 0.83/0.71 0.90/0.83 – –

3.2 Simulation studies

As part of our ablation study, we compare SAMUSA’s single-image and video
performance with SAM variants, each utilizing simulated boundary and region
point prompts, respectively.

Image segmentation We compare the performance of SAMUSA and SAM
variants using single-image simulated points in both supervised and zero-shot
settings. For the SAM variants, the first point prompt was placed at the center
of the ground truth mask, and subsequent points were iteratively positioned in
the areas with the largest errors, while SAMUSA used the same approach as
in training. Table 4 presents the results for all methods using 10 click prompts
across multiple datasets, while Figure 2 shows the mean IoU across these datasets
for varying numbers of clicks. As shown in Figure 2, SAMUSA outperformed all
SAM variants for any number of clicks. For example, it surpasses SAM2-US and
SAM2 by an average of 10% and 15% on the zero-shot task with two clicks.

Video simulations We performed a coarse simulation of video prompting,
based on the observation that users often made corrective prompts as soon as
mask propagation deviated unacceptably from their desired segmentation. We
simulated point prompts for the first video frame containing a mask, using the
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(a) Supervised (b) Zero shot

Fig. 3: Mean IoU comparison over 2 datasets when SAMUSA and SAM2-US are
supervised (a) and over 2 video datasets in zero-shot (b).

Table 5: Average Dice/IoU over 8 propagations on videos.(*) denotes models
tested in zero-shot setting, (+) denotes models tested in supervised setting (TP)
denotes applying temporal prompts.

Model CAMUS Thyroid Trusted IUSLL
SAM2* 0.90/0.82 0.70/0.61 0.43/0.39 0.73/0.64

SAM2-US+ 0.95/0.91 0.82/0.74 0.65/0.50 –
SAM2-USTP + 0.95/0.91 0.82/0.74 0.82/0.77 –

SAMUSA+ 0.96/0.92 0.84/0.76 0.87/0.83 –
SAM2-US* – – 0.46/0.41 0.70/0.60

SAM2-USTP* – – 0.74/0.69 0.77/0.67
SAMUSA* – – 0.75/0.70 0.76/0.67

single-image algorithm explained earlier, with 5 clicks. The predicted mask was
then propagated to subsequent frames until an incorrect segmentation mask was
predicted, which we defined as having an IoU score below 0.75. For that frame,
the same number of new clicks was simulated, followed by mask propagation.
We repeated this process up to 7 times.

In Figures 3a and 3b, we show that SAMUSA outperforms all models in
the supervised setting and demonstrates the performance gain from including
temporal points. Table 5 shows the average performance across all datasets.
However, unlike our user study with human annotators, no significant difference
was observed between SAMUSA and SAM2-USTP. It is important to note, how-
ever, that the simulation was limited to a very coarse approximation of real user
interactions.

4 Conclusion

SAMUSA represents a significant advancement in AI-assisted ultrasound anno-
tation, addressing the challenges posed by ambiguous structure boundaries in
ultrasound images and videos. By integrating boundary and temporal prompts,
SAMUSA enhances segmentation accuracy and efficiency compared to SAM2,
particularly in zero-shot applications where traditional region-based prompts
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struggle. The user study demonstrated notable improvements in annotation
speed and user experience, reinforcing SAMUSA’s practical utility in segmen-
tation annotation. Looking ahead, future research will explore integrating data
from other videos or imaging modalities to enhance the segmentation of low-
quality ultrasound images and videos for more accurate annotation.
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