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Abstract. Autonomous navigation for mechanical thrombectomy (MT)
remains a critical challenge due to the complexity of vascular anatomy
and the need for precise, real-time decision-making. Reinforcement learn-
ing (RL)-based approaches have demonstrated potential in automating
endovascular navigation, but current methods often struggle with gen-
eralization across multiple patient vasculatures and long-horizon tasks.
We propose a world model for autonomous endovascular navigation using
TD-MPC2, a model-based RL algorithm. We trained a single RL agent
across multiple endovascular navigation tasks in ten real patient vascu-
latures, comparing performance against the state-of-the-art Soft Actor-
Critic (SAC) method. Results indicate that TD-MPC2 significantly out-
performs SAC in multi-task learning, achieving a 65% mean success rate
compared to SAC’s 37% (p < 0.001), with notable improvements in path
ratio. TD-MPC2 exhibited increased procedure times, suggesting a trade-
off between success rate and execution speed. These findings highlight
the potential of world models for improving autonomous endovascular
navigation and lay the foundation for future research in generalizable
Al-driven robotic interventions.

Keywords: World model - Reinforcement learning - Mechanical Thrombec-
tomy - Autonomous Navigation - Al-driven Robotics.

1 Introduction

Stroke is a leading cause of death and disability worldwide, imposing signifi-
cant strain on healthcare systems and families [18]. Mechanical thrombectomy
(MT) has improved ischemic stroke outcomes, reducing mortality and disabil-
ity compared to medical therapy alone [4)21]. However, its effectiveness declines
with delayed treatment, emphasizing the need for rapid intervention [2IT]. De-
spite its efficacy, only 3.1% of stroke admissions in, for example, the UK receive
MT, far below the estimated 15% eligibility rate, due to limited access to MT-
capable centers and long transfer times [26/T9J20]. Additionally, operators face
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radiation exposure, increasing cancer and cataract risks, while protective gear
contributes to orthopedic strain [I6/28/17]. Robotic surgical systems offer a po-
tential solution by improving accessibility and reducing operator dependency
[25]. Tele-operated robotic MT could (1) allow specialists in centralized centers
to perform procedures remotely, while (2) Al assistance robots may enable less
experienced operators (interventional radiologists in peripheral hospitals) to per-
form MT effectively. Integrating Al into robotic systems could further enhance
efficiency and safety, with autonomous surgical robots already demonstrating
superior performance over manual techniques in some scenarios [23].

Autonomous endovascular navigation research has primarily focused on the
aortic arch [I3IT5l25], with recent work exploring micro-guidewire and micro-
catheter navigation in MT’s second phase [3]. These studies use multiple test
vasculatures, but examine simple tasks with short episodes, limiting clinical ap-
plicability. Additionally, autonomous two-device navigation for phase one of MT
has been investigated using a larger episode size but was limited to testing on
a single vasculature [24]. These studies use reinforcement learning (RL) algo-
rithms, the majority of which are sensitive to architecture, hyperparameters,
and are unable to perform over long time horizons, while often being designed
for single-task learning only [IT/7]. For complex or multiple tasks, this limits RL
to computationally expensive models or tasks where tuning is prohibitive [9].

To move towards realizing the benefits of autonomous MT navigation, it is
necessary to develop policies capable of performing long navigation tasks across
multiple patients vasculatures that can be adapted efficiently to new robots,
tasks, and environments [22]. One promising technique may be world models, a
learned representation of the environment that simulates its dynamics, enabling
a single agent to optimize actions in a virtual setting without relying solely on
real-world data [8]. Using this model, large-scale learning from diverse datasets
could create AI navigation systems that can understand, predict, and adapt to
real-world complexities [I2]. Recent work has shown that single configurations of
RL algorithms (DreamerV3 and TD-MPC2) with no hyperparameter tuning can
outperform specialized methods across diverse benchmark tasks [910]. They can
also complete farsighted tasks such as collecting diamonds in Minecraft without
human data or curricula and capturing expectations of future events during au-
tonomous driving [912]. Although the translation of these models to real-world
applications is limited, they hold the potential for creating agents capable of per-
forming long navigation tasks on a diverse range of patient anatomies. TD-MPC2
has shown significant improvements upon both Soft Actor-Critic (SAC) (a con-
figuration of which is the current state-of-the-art for autonomous endovascular
interventions compared to benchmarks [I5/2]), and DreamerV3 when examining
multi-task environments with continuous action spaces. It is also able to utilize
multiple data types, such as human demonstrator, RL collected, and its own
online interaction data (from a single task or across multiple tasks).

The aim of this study was to propose a framework for a world model for au-
tonomous endovascular interventions, and more specifically, MT. The primary
objective was to demonstrate that a singular RL agent could be used to perform



World Model for AT Autonomous Navigation in Mechanical Thrombectomy 3

multiple endovascular navigation tasks across multiple patient vasculatures. Our
contributions are as follows: 1) we implemented a world model capable of per-
forming multiple endovascular navigation tasks across multiple patient vascula-
tures, for the first time, 2) we proposed a framework for endovascular intervention
multi-task learning, 3) we compared our results to the current state-of-the-art
RL algorithms for autonomous endovascular interventions, demonstrating per-
formance across the largest dataset examined for autonomous MT.

2 Methods

2.1 Navigation tasks

MT typically involves navigating a guide catheter from the femoral or radial
artery to the internal carotid artery (ICA). An ‘access catheter’ is usually placed
within the guide catheter and taken ahead of the guide catheter tip during nav-
igation. Once the access catheter is within the carotid artery, the guide catheter
is advanced to make a stable platform. At this point, the guidewire and access
catheter are retracted, and a micro-guidewire within a micro-catheter is passed
through the stable guide catheter and navigated to the target thrombus site.
Frequently, the final step is to remove the micro-guidewire and exchange it for
a stent retriever to remove the thrombus, restoring blood flow to the brain.

The first phase of MT (navigation of guidewire and guide catheter from the
femoral to the ICA) has been split into five tasks for multi-task RL training.
These are based on previously defined phases of MT [5] and are described in
Figure [I] A target was randomly sampled from the set of points within the
target vessel, and guide catheter and guidewire navigated to it from a randomly
sampled point in the starting vessel.

The device’s distal position was described by three points equally spaced
2mm apart along the guidewire, denoted as (z,y;)i=1,2,3, with (2}, ;)1 repre-
senting the instrument tip. The target location was specified by the coordinates
(x},y;). Observations comprised current and previous device positions, target
location, and the previous action taken.

2.2 Data collection

The in silico environment for the navigation task utilized the stEVE frame-
work (Available at: https://github.com/lkarstensen/stEVE [I5]). The Bea-
mAdapter plugin for Simulation Open Framework Architecture (SOFA, v23.06)
was used to model the Neuron MAX 0.088" guide catheter (Penumbra, Califor-
nia, USA) (160 vertices with Young’s modulus of 47 MPa) and 0.035" guidewire
(Terumo, Tokyo, Japan) (120 vertices with Young’s modulus of 43 MPa) used
for navigation [27J6]. The simulation assumed rigid vessel walls (with an empty
lumen). The simulation’s real-world device behavior was determined by utiliz-
ing a tensile testing machine to measure the tensile strength of the devices,
which facilitated the calculation of their stiffness. Friction between the wall and
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Fig. 1. Full MT vasculature with each navigation task labeled. A;: Common iliac artery
to top of descending aorta, Az : top of descending aorta to left common carotid artery
(CCA), Azr: top of descending aorta to right CCA, Asp: left CCA to left ICA, Asrg:
right CCA to right ICA.

guidewire was iteratively tuned to mimic guidewire behavior in a test-bench
set-up. Such methodology previously allowed the translation of autonomous en-
dovascular navigation agents from in silico to in vitro aortic arch models and
from in silico to ex vivo porcine liver vasculatures [I5J14].

A computed tomography angiography (CTA) scan which encompassed the
aortic arch and extended to the cerebral vessels, and a CTA scan encompassing
the abdominal and thoracic regions, including the femoral arteries, descend-
ing aorta, and the aortic arch (obtained with UK Research Ethics Committee
AN/ON/YMOUS), were processed into surface meshes using segmentation tools
in 3D Slicer (v5.8.0). The centerlines with radii for all scans were then extracted.
The centerlines of the abdominal and thoracic regions were then scaled appropri-
ately so that the radius at the last point of the descending aorta would match the
first point on the aortic arch centerline. These two sets of centerlines were then
joined, and the radius at each centreline point was used to generate a surface
mesh, which was loaded into SOFA. This was repeated for ten aortic arch and
cerebral vessel CTAs, with the same CTA of the abdominal and thoracic regions
being scaled to fit each one. The mean right and left-hand-side vessel tortuosity
were 1.19+0.07 mm and 1.14 +0.05 mm, respectively. Type-I aortic arches were
found in 80% (8/10) of vasculatures, while the remaining were Type-II. Addi-
tional augmentation of the entire mesh was applied during training via random
scaling (0.7 to 1.3 for height and width) to enhance generalization.

Input parameters, including device rotation and translation speed, were ap-
plied at the proximal device end. Rotation and translation speed was constrained
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to a maximum of 180°s~! and 40 mms~!, respectively. Similar to a clinical

scenario with fluoroscopy, feedback during the navigation was given as two-
dimensional (z’,3y’) tracking coordinates of three points along each device’s tip;
no visual information showing the geometry of the patient vasculature was given.

2.3 Controller architecture

Two types of RL agents were trained in this study. One type used an implemen-
tation of the model-free RL algorithm, SAC from the stEVE framework [I5],
whereby the critic learns the value and the actor optimizes the critic directly
to maximize cumulative rewards [7]. This is useful for continuous action spaces,
leveraging experience replay for data efficiency, but requires tuning and struggles
under high-dimensional inputs [9]. The architecture includes a Long Short-Term
Memory (LSTM) layer for learning trajectory-dependent state representations
and feedforward layers for controlling the devices. The controller takes observa-
tions as input, and a Gaussian policy network outputs mean (p) and standard
deviation (o) for expected actions, representing the micro-catheter and micro-
guidewire rotations and translations. During training, actions are sampled from
the o, but for evaluation, p is used directly for deterministic behavior.

The other type of agent was trained using TD-MPC2, a model-based RL algo-
rithm designed for sample-efficient learning and effective planning in continuous
action spaces (Available at: https://github. com/nicklashansen/tdmpc2 [10]).
TD-MPC2 combines temporal difference learning with model-predictive control,
leveraging a learned dynamics model to simulate environment transitions and
plan action sequences over a short horizon. This approach enables the agent to
optimize actions based on both predicted rewards and task constraints while
using limited real-world interaction. By incorporating a latent dynamics model
and a cross-entropy planning method, TD-MPC2 is particularly well-suited for
complex tasks with longer episode lengths. This study used the base TD-MPC2
configuration but increased the length of the replay buffer from 1 x 106 to 1 x107.
Additionally, we implemented an LSTM layer as an observation embedder, al-
lowing storage of the environment state at each step so that the vessel structure
could be estimated by the path of the device tip.

The dense reward function used during training in both models is shown in
Equation [T} Pathlength is defined as the distance between the guidewire tip and
the target along the centerlines of the arteries, with Apathlength representing
the change in pathlength at time ¢ from the previous step at time t = —1.

1 if target reached
(1)

R = —0.00015 — 0.001 - Apathlength +
0 else

2.4 Training and evaluation

Initially, five agents were trained using SAC (one for each defined phase in Fig-
ure . Each of these agents was then evaluated for 250 episodes while the tra-
jectory data was recorded. This data was used to fill the replay buffer of the
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SAC world model and the TD-MPC2 world model before initiating training. All
models were trained for 1 x 107 exploration steps, with each navigation task (or
episode) considered complete when the target was reached within a threshold
equal to the entire cross-section of the vessel. An episode termination of 200
steps (approximately 27s) was set for computational efficiency. Training was
performed on an NVIDIA DGX A100 node (Santa Clara, California, USA).

We train and test on 10 patient-specific vascular anatomies, with evalua-
tions conducted every 2.5 x 10° exploration steps for 250 episodes, recording the
success rate, procedure time, and path ratio. Comparative statistical analyses
were conducted using two-tailed paired Student’s t-tests with a predetermined
significance threshold set at p = 0.05.

3 Results

3.1 Single task training

Results from single-task training for each of the five MT phases can be seen
in Table [1] Success rates of 100% were recorded for phases A; and Asg, while
success rates and high path ratios were exhibited in phase Asy (SR: 82%, PR:
90%), A2r (SR: 90%, PR: 90%), and Asy, (SR: 92%, PR: 93%). This data was
used to fill replay buffers before training for the world models in Section [3.2]

Table 1. Single task training using SAC. Success Rate: percentage of evaluation
episodes where the target is reached. Path Ratio: remaining distance to the target
point in unsuccessful episodes, calculated by dividing the remaining distance by the
initial distance. Procedure Time: time from the start of navigation to the target loca-
tion for successful episodes. Exploration Steps: number of training steps taken to reach
the point at which the results are provided. The reported values are mean + standard
deviation (standard deviation values may exceed logical bounds (0-100%) due to the
statistical calculation).

Task|Success Rate (%) g;';(;etzl;l)re Path Ratio (%) ]S*D;[.?Io)l;)ratlon
Ay 100 £ 0 9.8+ 1.5 100 £ 0 0.25 x 10°
Asr 82 £ 39 12.3£9.9 90 + 18 8.5 x 10°
Asr 100 £ 0 10.7+£7.4 100 £ 0 9.5 x 10°
Asr 90 + 30 8.7+6.1 90 + 26 2.5 x 10°
Asp 92 + 27 10.9 £ 6.9 93 £ 17 7.0 x 10°

3.2 World model

Results from training on multiple vasculatures and navigation tasks showed a
significant increase in mean success rate across all tasks for TD-MPC2, 65%
compared to 37% for the current state-of-the-art (SAC) (p < 0.001). These
results can be seen in Table [2] Furthermore, significant increases in success rate
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and path ratio were seen across tasks when moving from SAC to TD-MPC2:
Asr (SR: 8% to 66% [p < 0.001], PR: 29% to 77% [p < 0.001]), Asr, (SR: 16%
to 50% [p < 0.001], PR: 26% to 6% [p < 0.001]), and Asr (SR: 56% to 90% [p <
0.001], PR: 63% to 90% [p = 0.001]). Additionally, an increase in procedure time
was observed across all tasks when moving from SAC to TD-MPC2. This was
significant in A; (PT: 8.9% to 16.7% [p < 0.001]), Asy, (PT: 7.2% to 13.7% [p =
0.021]), and Az;, (PT: 5.6% to 12.9% [p < 0.001]). Exploration steps recorded
for SAC and TD-MPC2 were 4.5 x 10° (reached after 75 hours) and 0.5 x 106
(reached after 25 hours), respectively.

Table 2. World model results per navigation task, with mean results across all tasks
and vasculatures.

SAC TD-MPC2

Success [Procedure[Path Success [Procedure[Path
Rate (%)|Time (s) |Ratio (%)|Rate (%)|Time (s) |Ratio (%)
A; |96 + 20 (8.9 + 1.6 89+16 [96 £ 20 [16.7 £4.1 90 + 3
Azp |10 £ 30 14.5 + 7.1| 27+30 |22 + 41 [17.0£6.1 45 + 33
Asgr [8 £ 27 12.8 + 9.9 29+27 [66 + 47 [16.5+6.2 77T + 32
Asp |16 £ 37 7.2+ 7.0 26 +34 |50 £ 50 [13.7+6.3 66 + 38
Aspr |56 £ 50 5.6 + 4.5 63+43 [90 £ 30 [12.9+5.8 90 + 21

Mean[37 £ 48 [8.2 £ 4.6 [ 47+£40 [65 £ 48 [152+58 [ 73 £ 33

Task

4 Discussion

The results of this study demonstrate notable progress in the development of RL
models for autonomous MT, addressing multiple navigation tasks across ten real
patient vasculatures in a clinically-based simulation using industry-standard de-
vices. This represents the largest dataset examined for autonomous MT, surpass-
ing previous studies that focused on limited anatomical variations and smaller-
scale evaluations [24I15]. The results from single-task training indicate that SAC
performs well in short tasks, achieving success rates of 100% in phases A; and
Asp. Other tasks, such as Asp, Asr, and Azg, exhibited moderate to high suc-
cess rates, with corresponding path ratios. These results allowed suitable data to
be used for inputs to the world model, and illustrate SAC’s ability to effectively
learn task-specific policies with high levels of accuracy and path efficiency when
trained on shorter tasks. The reduced performance on left-sided navigation tasks
(A2, and Asy) highlights potential challenges related to increased vasculature
complexity. This variation requires further exploration to identify anatomical
features that influence performance but reflects clinical scenarios where the left
CCA is typically harder to catheterize and may need specialist access catheters.

The world model results demonstrate a clear advantage of TD-MPC2 over
SAC. A statistically significant increase in mean success rate was observed, with
TD-MPC2 achieving 65% compared to 37% for SAC (p < 0.001). Notably, TD-
MPC2 significantly outperformed SAC in Asgr, Asp, and Asg, while record-
ing the same or non-significant increases in success rate for A; and Asy. This
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highlights the advantages of TD-MPC2’s model-based framework, leveraging a
learned dynamics model and horizon-based planning to optimize actions in di-
verse and complex environments. SAC’s model-free approach may struggle to
generalize effectively to anatomical variations and multiple objectives. However,
in this context and other work, TD-MPC?2 failed to solve all tasks it was trained
on and exhibits limited scalability due to online planning [7]. The findings suggest
that TD-MPC?2 is better suited for scenarios requiring multi-task generalization
and adaptability to unseen environments. In TD-MPC2, the lower success rates
seen in Aoy, (22%) and Asp (50%) compared to other tasks may be attributed
to the lower performance of the corresponding single-task models. Despite gains
in success rate and path ratio, TD-MPC2 resulted in increased procedure time
across all tasks. The longer procedure times suggest that TD-MPC2 may con-
ceivably prioritize exploration and more deliberate navigation strategies, leading
to improved performance but at the cost of increased procedure time. Future
work could explore optimizing the trade-off between efficiency and exploration
in navigation.

These results underscore the importance of scalable and generalizable RL ap-
proaches for realistic clinical applications of autonomous MT. While the success
rate of TD-MPC2 (65%) highlights the need for further optimization, it repre-
sents a significant step toward bridging the gap between experimental perfor-
mance and clinical feasibility. The comparison of single and multi-task training
reveals critical trade-offs between task specialization and generalization. SAC
demonstrated high success rates in single-task training, but limited applicability
to real-world clinical scenarios, where agents must navigate diverse vasculatures.
Conversely, TD-MPC2’s superior performance in multi-task settings indicates
its potential as a robust framework for autonomous MT navigation, though its
performance remains suboptimal for clinical deployment. For world models, per-
formance relies on pre-existing data to train the world model, which might not
always be feasible, especially in novel environments such as this one. Here we
propose a balance between number of tasks and a single agent to execute them.

Future work should focus on improving TD-MPC2’s training pipeline to im-
prove generalization to unseen diverse vasculatures. Current world models have
demonstrated scalability to 80-150 tasks [Q7I0], underscoring their potential for
future work as it looks to incorporate more diverse datasets, more detailed sim-
ulation environments that consider contact forces [3], while transitioning to in
vitro testbeds. Although the vessels navigated in A; and As are almost entirely
rigid in practice, vessel deformation and motion for A3 may enhance in wvitro
translation. Using differentiable physics simulators could further enable efficient
policy learning using First-order Gradients, while work is needed to provide gra-
dient stability over long horizons. Future work may also compare image-based
RL, such as DreamerV3 [9], to the current approach, to evaluate if human-like
visual input provides benefit. Additionally, balancing task-specific performance
with generalization should remain a priority for advancing the clinical utility
of Al-based autonomous endovascular navigation, paving the way for safer and
more efficient outcomes in real-world applications.
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5 Conclusion

This study demonstrates the feasibility of a world model-based RL approach
for autonomous MT, addressing key challenges in generalization and multi-task
learning. The proposed world model leverages existing open-source repositories
to maximize reproducibility [I5/10]. Through evaluations across multiple patient
vasculatures, TD-MPC2 achieved superior generalization compared to SAC, with
a significant increase in success rate and path ratio. Future research should fo-
cus on refining world models for more efficient planning, integrating differen-
tiable physics simulators to enhance gradient stability, and expanding datasets
for better generalization across diverse vasculatures. The findings presented here
provide a critical step toward the development of Al-driven autonomous robotic
endovascular interventions with improved safety and precision.
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