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Abstract. Accurate nucleus detection in pathology images is crucial
for disease diagnosis. Deep learning based methods require extensive an-
notations of nuclei, which are time-consuming for pathologists. Active
learning (AL) provides an attractive paradigm for reducing annotation
efforts by iteratively selecting the most valuable samples for annotation.
However, most AL methods do not consider utilizing crowdsourced an-
notations from multiple workers with varying expertise levels and label-
ing costs, limiting their practical applicability. Recent approaches design
AL strategies that adaptively select the most cost-effective worker for
each sample, but these methods solely focus on the classification task,
overlooking the development of an AL framework with crowdsourced an-
notations for the detection task. Additionally, they struggle to adapt
to the changes in model performance during AL iterations, resulting in
inefficiencies in sample selection and cost management. Based on the
above considerations, we propose C2AL, a novel cost-effective AL frame-
work using crowdsourced annotations for nucleus detection in pathology
images. Specifically, we design a new criterion in the form of score func-
tion and a dynamic weighting adjustment strategy to iteratively select
the most cost-effective sample-worker pairs from the crowdsourced data.
Then, based on the selected sample-worker pairs, the labeled pool is up-
dated and the detection model is trained for performance evaluation. To
the best of our knowledge, this is the first AL framework for detecting
nuclei in the crowdsourced environment, and the experimental results
on one real-world and two simulated crowdsourced datasets demonstrate
that C2AL achieves higher detection accuracy at lower annotation costs
compared to existing methods.
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1 Introduction

Nucleus detection in pathology images is crucial for cancer progression analysis
[2]. Designing an effective deep learning based algorithm requires a large amount
of labeled data, which increases the annotation burden for experts [10][1]. Active
learning (AL) provides an attractive paradigm for reducing annotation efforts by
iteratively selecting the most valuable samples for annotation [18], which makes
the process of labeling new data more efficient. However, most AL methods do
not consider utilizing crowdsourced annotations from multiple workers with vary-
ing expertise levels and labeling costs, limiting their practical applicability. As
a matter of fact, specialists (SPs) are more likely to make correct decisions than
non-pathologists (NPs). However, it is infeasible to assign all unlabeled images
to SPs for annotation due to their high annotation costs [14]. On the other hand,
we cannot rely solely on the annotation from NPs since they often struggle with
labeling nuclei with complex morphology [15]. Hence, it is important to optimize
the selection process to balance accurate detection with lower annotation costs.

Recent methods have focused on designing AL strategies that select the most
cost-effective workers and samples, which can be broadly divided into two types:
sequential and joint selection. Sequential selection is a two-step process involving
sample selection followed by labeler assignment [29][8][7][28]. However, sequen-
tial strategies do not consider the workers’ performance during sample selection,
leading to the potential low-quality annotations. Joint selection, which considers
both samples and workers simultaneously, has been proposed to address this is-
sue [17][12]. Herde et al. [11] proposed the multi-worker probabilistic AL method
for estimating annotation performance to improve the joint selection of sample-
worker pairs. Similarly, Chakraborty et al. [4] framed the optimal sample and
worker selection as a constrained optimization problem and used linear program-
ming relaxation to select sample-worker batches.

Although much progress has been achieved, existing AL frameworks in crowd-
sourced environment solely focus on the classification task, the development of an
AL framework with crowdsourced annotations for the detection task (i.e., nucleus
detection) is overlooked. Intuitively, the detection task is more challenging since
it includes both the classification and localization branches [16]. Additionally,
existing methods struggle to adapt to changes in model performance during AL
iterations, resulting in inefficiencies in sample selection and cost management.
For instance, in the early stages, when the model lacks confidence and requires
more informative samples, existing methods fail to prioritize them, leading to
slower progress in model performance. As the model improves, these methods
fail to adjust the worker selection accordingly, leading to unnecessary reliance
on highly skilled annotators for simple samples, which reduces cost efficiency.

Based on the above considerations, we propose C2AL, a novel cost-effective
AL framework for detecting various types of nuclei in pathology images un-
der the crowdsourced environment. Specifically, we introduce a multi-criteria
sample-worker selection process that considers sample uncertainty, worker cost,
and worker credibility in each AL cycle. Furthermore, we introduce dynamic
weighting adjustment, a strategy that adjusts the importance of each sample-
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Fig. 1. Flowchart of C2AL. In each AL cycle, We combine sample uncertainty, worker
credibility, and worker cost into a unified score function to select the most cost-effective
sample-worker pairs for annotation. The method dynamically adjusts the weights based
on model performance, ensuring efficient learning while minimizing annotation costs.
The visual design is partly inspired by Figure 1 in [22].

worker pair based on the model’s progress during the learning process. We eval-
uate the effectiveness of C2AL through experiments on one real-world and two
simulated crowdsourced datasets. The results demonstrate that C2AL not only
achieves higher detection accuracy but also reduces annotation costs compared
to the existing methods.

2 Method

Flowchart of C2AL is shown in Fig.1. We start with a small labeled pool L =
{lk|k ∈ (1, · · · , nl)} with nl labeled images, and a large pool of unlabeled data
U = {uj |j ∈ (1, · · · , nu)} with nu unlabeled images. The labeled pool L contains
ground-truth annotations Y , and we have prior knowledge from annotations Ŷ
provided by np workers P = {pi|i ∈ (1, · · · , np)} on the labeled pool. The goal is
to optimize the selection of sample-worker pairs from the unlabeled pool in each
AL cycle. For unlabeled image uj and worker pi, C2AL defines a score function
Z(uj ,pi; r) based on the AL cycle r and three key criteria: Sample Uncertainty,
Worker Credibility, and Worker Cost. The criteria are weighted and combined
to identify the most cost-effective sample-worker pairs. Notably, the weights for
each criterion are dynamically adjusted based on the model’s progress during AL
iterations. After ranking the scores, the most cost-effective sample-worker pair
(u∗,p∗) is selected for annotation. The annotated sample is then added to the
labeled pool, and the model is updated accordingly. The process repeats until
the cost budget is exhausted or the desired accuracy is achieved.

2.1 Sample Uncertainty: Identifying Informative Samples

Considering sample uncertainty is essential in AL, as informative samples can
enhance model’s generalization ability [27]. We use entropy [21] to quantify each
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sample’s uncertainty. A sample with higher entropy indicates greater uncertainty
in the model’s predictions, making it more valuable for annotation [6]. In the
context of nucleus detection, we define the entropy of sample uj as follows:

F (uj) = max
b∈(1,··· ,Bj)

∑
gt

−Ht
b · log(Ht

b), (1)

where Bj denotes the number of predicted bounding boxes in uj , and Ht
b is

the probability of the b-th bounding box being classified as category gt. The
uncertainty of uj is defined as the maximum entropy across all bounding boxes.

2.2 Worker Credibility: Assessing Worker Reliability

In object detection, which combines the classification and localization task [30],
we consider both aspects to ensure reliable annotations. For the classification
task, we assume that a worker’s reliability is positively correlated with their
ability to correctly classify different types of nuclei, which is derived from the
prior knowledge Ŷ and the ground-truth labels Y , calculated from the worker’s
accuracy in annotating each nucleus type gt, denoted as hi(gt). We then define
the worker’s ability to label image lk as qi(lk), averaged across different nucleus
types. For each unlabeled image uj , we assume the worker’s labeling ability
on uj is consistent with that on lk if their nucleus compositions are similar.
The model predicts the nucleus composition of uj as vj = [vjt], where vjt is
the proportion of nucleus type gt in uj . To estimate qi(uj), we select the K
most similar images Ij = {Ij1, . . . , IjK} in the labeled pool L based on nucleus
composition using cosine similarity, with corresponding compositions denoted as
Ej = {Ej1, · · · ,EjK}. The worker’s ability on uj is computed as a weighted
average:

qi(uj) =

∑K
s=1⟨vj ,Ejs⟩qi(Ijs)∑K

s=1⟨vj ,Ejs⟩
, (2)

where ⟨·⟩ denotes the cosine similarity [25]. For the localization task, we assess
the worker’s ability based on the average intersection-over-union (IoU) [20] oi
and the missing detection rate mi, computed by comparing the worker’s an-
notations Ŷ with the ground truth Y . The overall credibility of worker pi for
annotating image uj is then given by the combination of classification ability
qi(uj), localization IoU oi, and missing detection rate mi:

Ri(uj) = qi(uj) · (1−mi) · oi. (3)

Thus, workers with higher classification accuracy, IoU, and lower missing de-
tection rate are considered more reliable for annotating image uj . Notably, a
worker’s credibility is not fixed but varies depending on the specific image. For
instance, even a less specialized worker may excel at annotating certain types of
nuclei [3], and we should make full use of their expertise.
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2.3 Worker Cost: Optimizing Annotation Costs

Intuitively, workers with higher expertise and accuracy naturally demand higher
compensation, as accurate labeling requires specialized knowledge and time from
experts like pathologists [3]. Thus, the cost for worker pi, denoted as Ci, can be
modeled based on their labeling ability. We use hi(gt) (defined in Sec. 2.2) to
represent the cost for annotating nuclei of type gt. The total cost for worker pi

is the average of hi(gt) across all nucleus types:

Ci =
1

ng

ng∑
t=1

hi(gt), (4)

where ng is the number of nucleus types. Therefore, workers with more expertise
in nucleus annotation come with higher costs and vice versa.

2.4 Score Function with Dynamic Weighting Adjustment

We propose an evaluation function Z(·) for active selection, combining sample
uncertainty F (uj), worker credibility Ri(uj), and worker cost Ci. To select the
most cost-effective sample-worker pair (u∗,p∗), we aim to maximize uncertainty
F (uj) and worker credibility Ri(uj), while minimizing cost Ci. The score func-
tion is defined as:

Z(uj ,pi; r) =
wr

uncF (uj) · wr
credRi(uj)

wr
costCi

, (5)

where r denotes the r-th AL cycle, and wr
unc, wr

cred, w
r
cost are dynamic weights

that adjust based on the current performance and progress of the model. Ini-
tially, when the model is less confident, more weights are given to sample un-
certainty and worker credibility to explore uncertain regions and ensure reliable
annotations. As the model improves and gains confidence, the focus shifts to-
ward minimizing worker cost, optimizing annotation expenses. The weights are
defined as:

wr
unc =

1

1 + e−F r
avg

, wr
cred =

1

1 + e−F r
avg

, wr
cost =

1

1 + eF
r
avg

, (6)

where F r
avg represents the average uncertainty for unlabeled images in the r-th

AL cycle. After ranking the scores in each cycle, the most cost-effective sample-
worker pair is selected as:

(u∗,p∗) = max
uj ,pi

Z(uj ,pi; r). (7)

The annotated sample is then added to the labeled pool, followed by model
updating. The process repeats until the cost budget is exhausted or the desired
accuracy is achieved.
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3 Experiment

Datasets. We evaluate C2AL on the NuCLS [3] and Lizard [9] datasets. Nu-
CLS is a crowdsourced dataset containing over 220,000 labeled nuclei from the
BRCA cohort of TCGA [23]. It includes 1,797 images, of which 53 have multi-
rater annotations and ground truth, while the remaining 1,744 contain only
ground truth. Lizard is a comprehensive dataset designed for colonic nucleus
detection, containing 208 images and 495,179 labeled nuclei. It is worth noting
that Lizard dose not include crowdsourced annotations. To address the issue of
limited multi-rater images in NuCLS, we conduct experiments on the real crowd-
sourced NuCLS dataset and extend the 1,744 images from NuCLS and Lizard
into simulated crowdsourced datasets, referred to as SimNuCLS and SimLizard,
respectively. For SimNuCLS, we calculate the averaged Intersection over Union
(IoU, oi), missing detection rate (mi), and classification accuracy (hi(gt)) for
each worker based on the multi-rater annotations, and extend the 1,744 images
using the following rules: Bounding Box Offset: let Ni denote the number of
labeled bounding boxes by pi in multi-rater annotations, with fi of these having
IoU greater than S, where S is the maximum averaged IoU between ground-truth
bounding boxes and annotations across all workers. We simulate pi’s annotations
by adjusting the positions of Boi percentage of bounding boxes compared with
ground truth, where Boi = (Ni−fi)/Ni. A worker with better bounding box an-
notation ability will have fewer adjusted bounding boxes, and vice versa. Based
on Boi, we calculate the shift amount Sai for each adjustment along a random
direction (i.e., top, bottom, left, right) as Sai = (S− oi)/Boi. The shift amount
is larger for workers with lower IoU (oi). Bounding Box Missing: To simulate
missing bounding boxes, we randomly drop some boxes based on the worker’s
missing detection rate mi. Nucleus Type Mis-classification: For each bound-
ing box, the nucleus type with ground truth of gt is misclassified with probability
1− hi(gt). For SimLizard, we apply the same rules but generate random values
for oi, mi, and hi(gt) for 4 SPs and 6 NPs. Specifically, for SPs, oi is in the
range of (0.60-0.80), mi in (0.10-0.20), and hi(gt) in (0.80-0.90). For NPs, oi is
in (0.40-0.60), mi in (0.20-0.30), and hi(gt) in (0.30-0.40).

Experimental Settings. For each dataset, we randomly split it into five folds,
with four for training and remaining for evaluation. We randomly select 10%
samples from training set as initial labeled set. In each AL cycle, we set the
number of samples required annotation as 5% of the training set. We use Faster
R-CNN [19] as the detection model, and K in Eq. 2 is fixed as 5. We use mean
Average Precision (mAP) at IoU threshold of 0.5 as the evaluation metric.

Comparison with the State-of-the-Arts. We compare C2AL with the fol-
lowing 8 baseline methods to evaluate its effectiveness: i) Random: Randomly
select sample-worker pairs. ii) MaPAL [11]: A multi-worker probabilistic AL
method to improve the joint selection of sample-worker pairs. iii) LNCL [5]:
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Fig. 2. The mAP curves with total costs increasing on three datasets.

Fig. 3. Ablation study on the NuCLS, SimNuCLS, and SimLizard datasets.

Learn from noisy crowd labels using logics. iv) D-Persona [24]: A unified frame-
work for multi-rater medical image analysis. v) CEAL [12]: An AL framework
under the crowdsourced environment using score function. vi) AMCC [26]: A
cost-effective AL framework under crowdsourced environment using the alter-
native minimization strategy. vii) ALIO [4]: Optimize the selection of sample-
worker pairs by solving a constrained optimization problem. viii) AAL [13]: A
multi-server multi-worker framework for AL. For methods without AL process
(LNCL and D-Persona), we use entropy to assess sample uncertainty (introduced
in Sec. 2.1) and select the most informative sample in each AL cycle. Fig. 2 plots
the mAP curves as total costs increase across all three datasets. It is obviously
that C2AL consistently outperforms other methods. On one hand, for the same
detection performance, C2AL generally requires lower annotation costs, as it
selects the most cost-effective sample-worker pairs that can reduce the total an-
notation costs. On the other hand, C2AL achieves higher mAP at a given cost.
For example, on the real crowdsourced NuCLS dataset, C2AL achieves an mAP
of 51.89% at a cost of 10, while its top competitors, MaPAL [11] and ALIO
[4], reach 50.25% and 49.94%, respectively. Similar trends are observed in the
simulated datasets (SimNuCLS and SimLizard). Moreover, the mAP on SimNu-
CLS is higher than on NuCLS, as SimNuCLS includes more images for training.
These results demonstrate C2AL’s potential to achieve strong nucleus detection
performance with sufficient crowdsourced data.

Ablation Study. To further evaluate the effectiveness of C2AL, we compare
it with several variants: w/o F: Select sample-worker pairs without consider-
ing sample uncertainty (Eq. 1). w/o C : Select sample-worker pairs without
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Fig. 4. Comparison of the visualization results among C2AL, ALIO and MaPAL at
the same annotation cost on the NuCLS, SimNuCLS, and SimLizard datasets.

considering worker cost (Eq. 4). w/o R: Select sample-worker pairs without
considering worker credibility (Eq. 3). w/o m&o: Only considering the classi-
fication branch to calculate the reliability of labeling (only keep the first term
in Eq. 3). w/o DWA: Select sample-worker pairs without Dynamic Weight-
ing Adjustment. As shown in Fig. 3, C2AL outperforms w/o F, w/o C, and
w/o R, highlighting the importance of considering sample uncertainty, worker
cost, and worker credibility for a cost-effective AL algorithm. Additionally, C2AL
consistently achieves higher mAP than w/o m&o, indicating that both classi-
fication and localization branches are critical for object detection. Notably, in
the NuCLS ablation study, w/o R exceeds C2AL at a certain cost because it
neglects the reliability of workers and selects a large number of low-cost NPs
for annotation. In such situations, more labeled images are involved in w/o R
that may temporally lead to higher mAP values. However, once all images are
labeled, C2AL outperforms w/o R. Finally, C2AL surpasses w/o DWA, as
the dynamic weighting adjustment allows for more effective selection of sample-
worker pairs by adaptively adjusting the importance of factors such as sample
uncertainty and worker cost, resulting in higher accuracy at a lower cost.

Visualization Results. Fig. 4 presents sample visualizations of C2AL, ALIO
[4], and MaPAL [11] on the NuCLS, SimNuCLS, and SimLizard datasets at
the same annotation cost, with ALIO and MaPAL as the best competitors.
It can be observed that C2AL outperforms both methods across all datasets.
Specifically, in nucleus classification (b,c,d), C2AL shows better accuracy than
ALIO and MaPAL. Additionally, in comparison with ALIO and MaPAL, C2AL
can successfully detect touching nuclei (a,f). On the contrary, ALIO and MaPAL
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tend to over-detect large single nucleus as multiple components (d), whereas
C2AL detects them accurately. Moreover, C2AL has lower missing detection
rates (a,d) and over-detection rates (e) compared to ALIO and MaPAL.

4 Conclusion

In this paper, we propose a novel AL framework C2AL for detecting different
types of nuclei in a crowdsourced environment. C2AL aims to achieve accu-
rate detection while minimizing annotation costs by using a dynamic weighting-
adjusted score function to select cost-effective sample-worker pairs. We evaluate
C2AL on both simulated and real crowdsourced datasets, and the results show
that C2AL outperforms the existing methods, highlighting its potential for prac-
tical applications in nucleus detection under the crowdsourced environment.
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