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Abstract. Ossicular chain lesions can cause hearing loss, making accu-
rate segmentation of ossicles critical for clinical diagnosis and treatment.
Ultra-high-resolution computed tomography (U-HRCT) provides quality
images for ossicle segmentation tasks, but the complex structure of the
stapes and variations in annotators’ experience often lead to noisy labels
in 3D annotation within clinical practice. To address this, we propose a
novel framework tailored for two types of noisy labels: (1) incomplete-
structure labels, and (2) complete-structure but inaccurate labels. For the
former, we introduce a Dilating&Selecting (D&S) framework, which com-
pletes missing structures using a dilating Volumetric Discrete Diffusion
Refiner (VDDR) with a novel cover loss and evaluates label complete-
ness via a completeness selection strategy. For the latter, we introduce a
noise-based augmentation to better train VDDR. Experimental results
demonstrate that D&S framework reduce the time cost of manual anno-
tation by 90.2%, while VDDR outperforms other state-of-the-art meth-
ods. To facilitate further research and development, our code and two
datasets are publicly available.
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1 Introduction

The ossicular chain is a small, complex structure in the middle ear, comprising
three bones: the malleus, incus, and stapes [14]. The stapes, the smallest bone in
the body, have a base plate about 0.3 mm thick [6]. Once the ossicular chain is
damaged, it may lead to sound conduction disorders and varying degrees of hear-
ing loss, seriously affecting the physical and mental health of patients [19]. The
segmentation of the ossicular chain is of great significance for medical imaging
diagnosis and surgical planning [21]. Previous studies [15,8,16] have focused on
the ossicular chain segmentaiton, however, conventional CT imaging struggles
⋆ These authors contributed equally to this work.
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Fig. 1. Illustrations of different types of noisy labels compared with their corresponding
ground truth (GT).

with accurate identification, particularly of the stapes. Ultra-high-resolution CT
(U-HRCT) offers clearer imaging, improving ossicular chain visualization [25].
However, the complexity of the stapes and variability in annotator experience
often result in inaccurate annotations, which are referred to as noisy labels [20].
In medical image computing and related fields, Ground Truth (GT), which refers
to the actual labels, typically requires experts to consume substantial time for
meticulous annotation. Consequently, obtaining authentic ossicle segmentation
labels on large-scale datasets is often impractical. Thus, developing more pre-
cise automatic segmentation algorithms and tools is vital for improving ossicular
chain annotation accuracy, efficiency, and enabling automated measurement and
diagnosis.

Unlike previous works [18,24,7] that attribute noisy labels as ambiguous er-
rors caused by human or machine annotators, this paper discusses noisy labels
where the causes are known. The practical scenario we consider is as follows:
Two datasets, OSS-I and OSS-C, need to be annotated. Due to the extremely
small size of the stapes in 3D CT scans (only contains 1-2 pixels in some slices)
and low signal-to-noise ratio (SNR), the annotators must decide whether to seg-
ment uncertain pixels based on 2D views. For OSS-I, annotators were instructed
to mark only the clearly visible parts of the stapes, resulting in an incomplete-
structure label compared to the GT, as shown in Figure 1(a) and (b). Figure 1(c)
shows a representative slice from Figure 1(a), illustrating how noise at the base
of the stapes (highlighted by the orange arrow) leads to missing annotations in
that region. For OSS-C, annotators were instead asked to complete the stapes
structure based anatomical knowledge, marking as much as possible. The result-
ing complete-structure annotation (Figure 1(e)) is more complete but still not
fully accurate compared to the GT (Figure 1(f)). We define GT as the segmen-
tation results that are deemed satisfactory by relevant expert annotators. It is
relatively easy for experts to judge whether a result is acceptable, but it is much
more difficult and time-consuming for them to manually segment satisfactory
results. So we wanted to reduce the labeling burden by our methods. The noisy
labels in OSS-I and OSS-C result from practical limitations, both differ from the
expert-approved GT. Since generating GT is time-consuming, we train models
to refine noisy labels, allowing experts to focus on verification rather than full
annotation.
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Fig. 2. Overview of the proposed conditional Volumetric Descrete Diffusion Re-
finer (VDDR) and Dilating&Selecting (D&S) framework.

To correct the aforementioned noisy labels, we draw inspiration from diffu-
sion models [13,1] and its application on medical segmention workflow [3,9]. We
conceptualize label refinement as a data generation process, where the diffusion
model progressively denoises the noisy labels, thereby making the refinement
process more stable and controllable. Motivated by [22], we proposed a con-
ditional Volumetric Discrete Diffusion Refiner (VDDR) which is more suitable
for segmentation due to the discrete diffusion process. Furthermore, VDDR is
model-agnostic and is convenient to be applied in different situations. We first
design a Dilating & Selecting framework which contains a dilating VDDR to ex-
pand and complete the incomplete-structure labels with a novel cover loss and a
completeness selection strategy to select the appropriate model parameters. Af-
ter obtaining partially accurate labels, we use VDDR to correct the inaccurate
labels.

The contributions of this work are summarised as follows: 1) To the best of
our knowledge, VDDR is the first model-agnostic refiner in the field of 3D medical
image segmentation which can be used for segmentation label refinement in
numerous situation. 2) We design the Dilating& Selecting framework to correct
noisy labels without requiring accurate labels in practical scenarios, resulting in
a 90.2% reduction in time costs compare to manual refinement. 3) Extensive
experiments show that VDDR can effectively enhance label quality. 4) For the
first time, two new staple segmentation datasets, including noisy labels and GT
are released, and code is available at https://github.com/Flq2002/3dOssSeg.

2 Method

2.1 Problem Set-up and Method Overview

In this work, we consider the problem of designing a segmentation framework to
correct the noisy labels acquired from human annotators. Specifically, we con-
sider a scenario where we have a set of 3D medical images which are divided
into two groups {xi

n ∈ RH×W×D}NI
n=1 and {xc

n ∈ RH×W×D}NC
n=1 (with H,W,D

denoting the width, height, and depth of the 3D images, and NI , NC repre-
senting the sample number of each group) based on different annotation types.

https://github.com/Flq2002/3dOssSeg/tree/master
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Table 1. Descriptions about key signs

Signs Descriptions Signs Descriptions

ỹi Incomplete-structure label ỹc Complete-structure but inaccurate label
xi Input image with ỹi xc Input image with ỹc

yi Accurate label with xi yc Accurate label with xc

x̃i Augmented image on xi ẽc Erosion result on ỹc

One group consists of incomplete-structure labels {ỹin ∈ {0, 1}H×W×D}NI
n=1,

while the other group contains complete-structure but inaccurate labels {ỹcn ∈
{0, 1}H×W×D}NC

n=1.
To refine the incomplete-structure label ỹi, we design a Dilating&Selecting

(D&S) framework which mainly contains a dilating Volumetric Discrete Diffu-
sion Refiner (VDDR) and completeness selection strategy as depicted in Figure
2. An intuitive approach is to train dilating VDDR on complete-structure label
ỹc, enabling the model to have completion capabilities. However, due to the ab-
sence of GT, overfitting the complete-structure label ỹc may lead to segmenting
excess parts as ỹc is inaccurate. At the same time, insufficient training may result
in an inability to complete the segmentation. To address this, we have designed
a completeness selection strategy to select the most appropriate model param-
eters to complete the incomplete-structure label ỹi. After post-processing, the
accurate label yi is obtained. After that, we refine inaccurate labels ỹc through
training VDDR. A noise-based augmentation is designed to reduce the CT im-
age quality disparity between xi and xc, yielding augmented images x̃i. After
training VDDR using x̃i or xi and yi, the model is applied on ỹc to infer the
final label yc.

2.2 Conditional Volumetric Discrete Diffusion Refiner

We proposed our Conditional Volumetric Discrete Diffusion Refiner (VDDR)
based on Segrefiner [22]. In the forward process, we permute the target mask
m0, transforming it into a coarse mask mT . The intermediate mask mt (t ∈
{1, 2, ..., T −1}) is a transitional phase between m0 and mT which is obtained by
the transition sample module proposed in Segrefiner [22]. In the reverse process,
we train a conditional UNet to predict the fine mask m̃0|t at each timestep t.
We define si,j,k0 = [1, 0] and si,j,kT = [0, 1] as one-hot vectors to represent the fine
and coarse state of pixel (i, j, k) in mt, respectively. The forward process and
reverse process are described as:

q(si,j,kt | si,j,kt−1 ) = si,j,kt−1 Qt (1)

pθ(s
i,j,k
t−1 | si,j,kt ) = si,j,kt P i,j,k

θ,t (2)

where Qt is a states-transition matrix and P i,j,k
θ,t is a reversed states-transition

matrix (see [22] for detailed).
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Since CT images are single-channel, they lack some information compared to
natural images, which are typically three-channel. To enable the model to better
focus on and extract image features, instead of directly concatenating the image
and mask along the channel dimension as done in [22,9,4], we designed an image
encoder as illustrated in the figure 2, the number and size of the image encoders
are identical to those of the UNet encoder. After obtaining multi-scale image
features, we add them pixel-wise to the corresponding mask features of the same
resolution to generate the final feature for UNet decoder.

2.3 Dilating&Selecting Framework

Dilating VDDR Based on VDDR, in the forward process, we gradually erode
the complete-structure but inaccurate noisy label ỹc (which is more appropri-
ately referred to as the mask in this situation), transiting it into a coarse mask
ẽc. In other words, we have m0 = ỹc and mT = ẽc. In addition to the commonly
used binary cross-entropy loss and dice loss, the gradient loss [5] is also intro-
duced, which is characterized as an L1 loss between the segmentation gradient
magnitudes of the predicted mask m̂0|t and the original mask m0. To maximize
the completion capability of the model, we design a novel cover loss to constrain
further m̂0|t to be a superset of the intermediate mask mt. The cover loss is
defined as follows:

Lcover =
∑

(ReLU(mt − m̂0|t)) (3)

where ReLu(x) = max(x, 0) and the operator
∑

represents the summation over
all pixel values. Therefore, the objective function for training this model is:

L = Lbce + Ldice + αLgrad + βLcover (4)

where α and β are hyperparameters to balance the magnitude of all losses.

Completeness Selection Strategy To select the most appropriate model pa-
rameters, we first need to evenly sample np model parameters Pm1 , Pm2 , ...Pmnp

from the training process of the dilating VDDR, and apply them to the noisy
labels ỹin, n = 1, 2, ..., NI to obtain candidates ym1

n , ym2
n , ..., y

mnp
n , where mk =

⌊Ntot

np
⌋ × k (k = 1, 2, ..., np) represents the iteration step and Ntot means the

total number of training steps. Then, we train a classification model C to distin-
guish between ỹi and ỹc. The model C is capable of discerning the completeness
of the mask, outputting the probability of label completeness for each input
mask (where a probability closer to 0 indicates greater incompleteness and a
higher probability indicates greater completeness). By calculating the probabil-
ity for each ymk

n and averaging them, we obtain Probmk
= 1

NI

∑NI

n=1 C(ymk
n ),

k = 1, 2, ..., np. Since the dilating VDDR increasingly fits the data, the probabil-
ities Probmk

should gradually increase with the increase of mk. We hypothesize
that a sudden increase in probability, corresponding to a model where the labels
are complete, indicates the desired parameter model.
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Completeness Selection Strategy

Fig. 3. The probability changes as the iteration progresses, with the orange arrows
indicating the initial significant increases in value and an example of the dilating VDDR
inference process based on the selected parameter. m6 represents the coarse mask,
which is progressively refined by the dilating VDDR until we obtain the fine mask m0.

2.4 Noise-based Augmentation

We apply the NLMeans denoising [2] on the CT images xi and xc to obtain the
estimated denoised images xi

d, x
c
d, and the estimated noise ni, nc. This results in

an augmented image x̃i = xi
d + nc, which has a noise pattern similar to xc.

3 Experiments and Results

3.1 Datasets

The temporal bone CT datasets, OSS-I and OSS-C, used in this study were
collected through unilateral scanning of the temporal bone with a U-HRCT [25]
scanner. The scanning parameters were set to a voltage range of 100-110 kVp
and a current range of 120-180 mAs, with a reconstruction field of view of 65 mm
× 65 mm. The slice thickness and interval were set to 0.1 mm, and a total of 370
slices were acquired. The images were obtained after a 20-second scan, resulting
in a final image size of 370 × 650 × 650. All data were anonymized. Labeling was
performed using Mimics 19.0†, with different annotation training (as described
in the Introduction), leading to label counts of 51 and 52, respectively. As this
study focuses on the stapes, the region surrounding the stapes was cropped to
create a 64 × 64 × 64 volume for input into the model.

3.2 Implementation Details

VDDR is trained with AdamW (lr=5× 10−5, batch size=1), timestep T=6, loss
weight α=5, and β=0.8 for the dilating variant. Post-processing uses kernel-
based sliding windows and morphological closing for output refinement. The
classification model adopts Adam (lr=0.001, batch size=16, 100 epochs) with
cross-entropy loss.

All experiments are implemented in PyTorch 1.12.1 and MONAI 1.3.2 on
Python 3.8.19, using an Intel i9-13900K CPU and NVIDIA RTX 4090 GPUs
(24 GB).

† https://www.materialise.com/en/healthcare/mimics/mimics-core
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Fig. 4. Segmentation results. The first row shows the results from the baseline, while
the second row presents the refined results from our VDDR.

3.3 Refinement of OSS-I

In the D&S framework used to refine OSS-I, we set np = 10 and Ntot = 104, 000.
The variation in probabilities, Probmk

for k = 1, 2, . . . , 10, is shown in Figure
3. As seen, the most significant change in probabilities occurs at the 52,000th
step, which is halfway through the training process. This aligns with the idea
that a small step size may lead to underfitting, while a large step size would
cause overfitting. Therefore, we chose the model parameters from this step for
inference. An example of the inference process is shown in Figure 3, where the
model progressively refines the incomplete areas within the mask.

The inference results were then submitted to an expert for evaluation based
on the following criteria: A noisy label indicating over-segmentation is scored 0.
If the noisy label represents under-segmentation, Score 1 means the refined label
is unreasonable; Score 2 means it is generally reasonable; and Score 3 means
the refined label is completely accurate. After excluding two cases that received
Score 0, the proportion of refined labels rated at least Score 2 was 100%, with
73.5% (36/49) rated as completely accurate. This demonstrates the practical
effectiveness of the proposed framework.

Additionally, we asked the expert to refine the remaining labels using the
model’s outputs, significantly reducing the time compared to correcting the
original noisy labels directly. For experts experienced in annotation, the for-
mer approach took an average of only 10 minutes per revision, compared to
30 minutes for direct corrections. This led to a 90.2% reduction in time spent
on annotating our OSS-I dataset.

3.4 Refinement of OSS-C

After obtaining the accurate labels for OSS-I, a direct approach to obtaining
accurate labels for OSS-C would be to train the VDDR using OSS-I and directly
infer on OSS-C to achieve expert-satisfactory labels. However, in practice, due
to limited, low-quality CT image and the higher difficulty of label refinement
for OSS-C compared to OSS-I (the latter only requiring dilation refinement),
the expert satisfaction rate was less than 10%. Therefore, we asked experts to
manually correct the labels of OSS-C, setting OSS-I as the training set and
OSS-C as the test set to further investigate the performance of our VDDR.
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Table 2. Evaluate other segmentation methods and apply our VDDR to their results.
The results in bold represent the optimal outcomes of our model, while the underlined
results indicate the optimal outcomes of the baseline.

Methods Coarse Mask VDDR (ours)
Dice↑ Jaccard↑ 95HD↓ ASD↓ Dice↑ Jaccard↑ 95HD↓ ASD↓

MedNeXt [17] 69.92 54.09 2.62 0.55 74.07 59.04 2.36 0.55
Diff-UNet [23] 73.31 58.10 3.86 0.90 73.94 58.91 4.02 0.92
UNETR [11] 69.21 53.31 2.66 0.67 73.07 57.83 2.53 0.60

SwinUNETR [10] 75.73 61.31 2.49 0.56 76.70 62.50 2.37 0.54
SwinUNETR-V2 [12] 76.39 62.10 2.30 0.53 77.09 62.99 2.20 0.51

CascadePSP [5] 75.85 61.32 2.09 0.47 76.24 61.80 2.07 0.46
Noisy Label (manually)

70.23 54.79 3.43 0.66
77.14 63.18 2.40 0.59

w/o noise-based aug 75.31 61.05 2.95 0.57
w/o image encoder 73.05 58.09 3.14 0.59

Five state-of-the-art (SOTA) 3D medical image segmentation methods are
chosen for comparison, including one CNN-based method (MedNeXt [17]), one
diffusion-based method (Diff-UNet [23]) and three transformer-based methods
(UNETR[11], SwinUNETR [10], and SwinUNETR-V2 [12]). We also modified
the classic 2D refiner network CascadePSP [5] into a format capable of accepting
3D image inputs for further comparative analysis. We choose four evaluation
metrics: Dice Score (%), Jaccard Score (%), 95% Hausdorff Distance (95HD) in
voxel and Average Surface Distance (ASD) in voxel.

Comparison with SOTA methods The quantitative results are reported in
Table 2. The coarse mask on the left side represents the predictions of different
methods. Specifically, the prediction results of CascadePSP are based on noisy
label, which refers to inaccurate labels from manual annotation. The right side
shows the results after refinement by our model. It can be observed that, except
for Diff-UNet, the performance metrics of the other methods have improved
to varying degrees by our VDDR. When the coarse mask is the noisy label,
our model achieves optimal results in terms of Dice and Jaccard scores. The
visualization results are shown in the Figure 4, where the corrected outcomes
show improvements while retaining the structural features of the coarse masks.

Ablation Studies The results of our ablation experiments using noisy label
as the coarse mask are presented in the last two rows of the Table 2 and "w/o
image encoder" indicates that the image and mask are concatenated along the
channel dimension and input into a UNet with 2 input-channel. It is evident
that both noisy augmentation and the image encoder significantly enhance the
model’s performance.
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4 Conclusions

This paper addresses noisy labels in ossicular chain segmentation and proposes a
label refinement method. The Conditional Volumetric Discrete Diffusion Refiner
(VDDR), which combines an image encoder with a discrete diffusion process,
effectively refines segmentation labels. The Dilating&Selection framework, using
a dilating VDDR with cover loss and completeness selection, corrects incomplete
labels without accurate annotations. This framework could provide valuable in-
sights for other applications. VDDR consistently refines coarse labels under var-
ious conditions, demonstrating robustness. Future work will explore large-scale
dataset applications.
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