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Abstract. Accurate Couinaud segmentation of liver CT/MR is essential in help-
ing surgeons perceive the positional relationship between liver anatomy and in-
trahepatic lesions to make surgical planning. Unfortunately, current conventional
and deep-learning based methods remain challenges in accurate Couinaud seg-
mentation since the segmentation boundaries of different categories depending on
hepatic vascular information are hard to predict. This work proposes a new deeply
learned framework called anatomy-aware frequency-attention transformer net-
works (AFATN) for Couinaud segmentation of liver anatomy which contains the
hybrid anatomy-aware preprocessing and frequency-attention transformer net-
works (FATN). Specifically, our framework first uses hybrid anatomy-aware pre-
processing to integrate the hybrid cues of liver contour and hepatic venous cen-
terline, then effectively utilizes hybrid cues for accurate Couinaud segmentation
through the frequency-attention transformer networks with omission re-detected
loss function. Our segmentation model FATN uses transformers to extract local
structure and global semantic features and further focus on the hybrid cues with
frequency-attention mechanisms. The proposed method was evaluated on clin-
ical CT data and compared with currently available deep learning approaches,
with the experimental results demonstrating that our method outperforms other
approaches especially in accurately segmenting the Couinaud boundaries.

Keywords: Couinaud segmentation · Liver segmentation · Hepatic vessels · Trans-
former · Frequency attention.

1 Introduction

The Couinaud segmentation standard is widely used to describe the functional anatomy
of the liver, which divides the liver into eight distinct units based on its umbilical fis-
sure and vascular supply, with each unit having its own inflow and outflow hepatic ves-
sels [6]. Generating an accurate three-dimensional visualization of the Couinaud seg-
mentation from Computed Tomography (CT) and Magnetic Resonance (MR) can help
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surgeons intuitively perceive the positional relationship between hepatic segments and
intrahepatic lesions, and determine suitable treatment between radiofrequency ablation
and hepatectomy procedures [19]. Since manual annotation in clinics is time-consuming
and labor-intensive, automatic and accurate Couinaud segmentation for surgical plan-
ning is certainly beneficial to surgeons and patients.

Conventional Couinaud segmentation contains two categories: voxel-based and plane-
based. Voxel-based methods allocate liver voxels to these segments by considering the
distances between their locations and a specific branch of the hepatic vein [23], which
does not follow the standard of Couinaud segmentation. Plane-based approaches first
detect anatomical geometric elements like landmarks and lines from the liver surface
and vessels, then reconstruct hepatic segments by the planes made up of these elements.
For instance, Pamulapati et al. [1] built skeletonization veins and depend on the orien-
tation between points and skeleton to construct the functional segment, while Wang and
Arya et al. [2, 20] employed key point detection for Couinaud classification.

Deep-learning based methods are more popular for automatic medical image seg-
mentation. Convolutional neural networks (CNN) such as U-Net [5, 11, 12] and Re-
sUnet [24] have achieved remarkable results for many segmentation tasks. CNN works
well in extracting the local texture, while they have the limited ability to extract the
global features because convolution only focuses on the surrounding regions instead
of capturing long-distance relationships. To solve this problem, some works propose
attention mechanisms to focus on crucial information of images [15, 21, 25, 26]. Re-
cently, transformer-based models or integrated CNN with transformer models have be-
come more popular and achieved great performance on many liver-related segmentation
tasks [4, 9, 10, 16, 22].

However, existing methods still remain challenging for accurate Couinaud segmen-
tation because the boundary of the hepatic segments depends on the location of the hep-
atic veins and portal veins and there is no significant contrast between the boundaries
of the different categories. This work considers the importance of utilizing the hepatic
vessels for Couinaud segmentation and proposes a new deeply learned anatomy-aware
frequency-attention transformer framework (AFATN) to accurately obtain hepatic seg-
ments. The highlights of our work are clarified as follows. First, we propose a hybrid
anatomy-aware preprocessing to extract hybrid cues of liver contour and hepatic vessels
and highlight these cues on CT/MR images to help networks perform feature extraction,
which applies the advantages of plane-based approaches to deep learning methods. Sec-
ond, we propose the frequency-attention transformer networks (FATN) for anatomy-
aware Couinaud segmentation which uses a transformer-based encoder to extract suffi-
cient local texture and global semantic features and employs global frequency-attention
to enhance the structural boundary, especially the hepatic vascular information.

2 METHODS

The proposed anatomy-aware frequency-attention transformer framework (Fig. 1) gen-
erally consists of two parts: (1) hybrid anatomy-aware preprocessing, and (2) frequency-
attention transformer networks (Fig. 2) with omission re-detected loss function.
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Fig. 1: Our new framework consists of hybrid anatomy-aware preprocessing and
frequency-attention transformer networks (FATN) with omission re-detected loss.

2.1 Hybrid Anatomy-aware Preprocessing

The Couinaud segmentation boundary is based on the five planes consisting of the left
umbilical fissure and four venous trunks (middle and right of the hepatic vein, left and
right of the portal vein). Therefore, our framework aims to extract the vascular trunks
and highlight this information in training CT/MR data, so that the segmentation network
can better focus on this information to extract accurate hepatic segment boundaries.

For the input CT/MR images I(x, y, z), we first segment the liver mask L(x, y, z)
through nnUNet [11] and segment hepatic and portal veins V̂(x, y, z) through [22].
Then, we employ the vessel centerline extraction approach from VTK [13] to extract
hepatic venous trunks V(x, y, z) for segmented veins V̂(x, y, z). Note that all points on
the extracted centerline will be selected according to their obtained vessel diameters,
and points with relatively small vessel diameters are removed.

Now we have three intermediate outputs: the CT/MR input I(x, y, z), liver mask
L(x, y, z) and intra-hepatic veins centerline V(x, y, z). The new CT/MR data H(x, y, z)
can be obtained by a hybrid addition operation which integrates the original input with
the extracted hybrid cues of liver mask and hepatic venous trunks

H(x, y, z) =

 0, L(x, y, z) = False,
maximum HU, L(x, y, z) = True,V(x, y, z) = True,

I(x, y, z), L(x, y, z) = True,V(x, y, z) = False,
(1)

where HU represents the intensity value range of I(x, y, z). After the hybrid addition
operation, we averagely space the three-dimensions voxel (x, y, z) to (0.78, 0.78, 4.0)
for all cases and use Z-score normalization to normalize the intensity value of H(x, y, z)
to narrow the variability from different patients according to [11]

Φ(x, y, z) = ψ(0.78,0.78,4.0)(Normx,y
z (H(x, y, z))), (2)
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Fig. 2: Frequency-attention transformer networks (FATN) for Couinaud segmentation.

where ψ is uniform spacing operation and Normx,y
z describes Z-score normalization.

Eventually, to reduce the size of input images and decrease unnecessary distractions
of irrelevant regions, we perform region cropping operation ϕ(·) for all cases to exclude
regions without liver to obtain the final training data Φ̂

Φ̂ = ϕ(Φ(x, y, z)) , if L(x, y, z) = False. (3)

2.2 Frequency-Attention Transformer Networks

We explore and analyze the performance of CNN and the transformer for medical image
segmentation. The CNN modules such as residual block [24] can extract sufficient local
texture and structure features while they have the limited ability to extract the global
semantic features. On the contrary, the transformer [7] using multi-head self-attention
can capture long-distance relationships to extract more global semantic features, and
the sliding window-based attention [14] can also capture sufficient local features.

Therefore, we design a transformer-based feature extraction model that integrates
the swin-transformer [14] and standard transformer [7] to extract both local and global
features. Additionally, we propose a frequency-attention module to enhance the edge
structural information of feature maps, which makes networks pay more attention to
vessel characteristics of anatomy-aware CT/MR data to obtain more accurate bound-
aries of hepatic segments. The architecture of our FATN is shown in Fig. 2.

Encoder. The transformer-based encoder contains four stages. The first stage will
first divide the input training data Φ̂ ∈ RH×W×D×1 into 3-D patches ∈ RM×(P 3×1),
where P is the patch size we set to 4 and M = (H × W × D)/P 3 represents the
number of patches. Then, each 3-D patch will be flattened and projected into C1 di-
mension token through a trainable linear projection. The first stage finally employs N
swin-transformer layers [14] with shifted-window multi-head self-attention (MSA) and
multi-layer perceptron (MLP) to extract local texture featuresX1 ∈ RM×C1 from these
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tokens. After feature extraction, local features X1 will be assembled into image-like
feature maps ∈ RH/4×W/4×D/4×C1 for the next feature-extraction stage and feature-
fusion decoder. The operation of the second to the fourth feature-extraction stage is
almost similar to the first stage. All the patch-merging modules set the patch size to
2 for downsampling the feature map of the previous stage. Note that the second stage
also uses swin-transformer layers [14] for local feature extraction, while the third and
fourth use standard transformer layers [7] to extract multi-scale global features. After
that, we obtain two local feature maps and two global feature maps with different sizes
{X1, X2, X3, X4} from the transformer-based encoder.

Decoder. The feature-fusion decoder can be divided into two steps. It first uses
the global frequency-attention module to further highlight the noteworthy or essential
boundary structural information on each feature map, then fuses these feature maps
through the feature-fusion module from coarse to fine and predicts the final segmen-
tation result by a head module. The operation of the frequency attention module on
feature maps Xi ∈ RHi×Wi×Di×Ci can be formulated as

X̂i = Xi +W i
FA ◦Xi, i = {1, 2, 3, 4}, (4)

W i
FA = Conv1(Conv3(fIDFT (WBF ◦ (fDFT (Xi)))))), (5)

WBF (x, y, z) = 1− exp(−α(
√

(x− xc)2 + (y − yc)2 + (z − zc)2√
(Hi/2)2 + (Wi/2)2 + (Di/2)2

)β) (6)

where fDFT and fIDFT are 3-D discrete Fourier transform (DFT) and 3-D inverse
discrete Fourier transform (IDFT), which are applied to each channel of the feature
maps, WBF is our designed bandpass filter weighted map which is used to filter out
low-frequency information in the spectrum and preserve high-frequency edge struc-
tural information, xc, yc, and zc represents the center position of map, α and β are
hyper-parameters used to control the degree of low-frequency information filtering, "◦"
represents dot product operation, and Conv3 and Conv1 are 3 × 3 × 3 and 1 × 1 × 1
convolution operations to obtain frequency attentive map WFA.

After feature maps {X̂1, X̂2, X̂3, X̂4X4} are obtained through the transformer-
based encoder and the frequency attention module, four feature fusion modules cor-
responding to four stages of the encoder are used to fuse these features

F4 = U(Θ(⊗(X4, X̂4))), (7)

Fi = U(Θ(⊗(Fi+1, X̂i))), i = 3, 2, 1, (8)

where ⊗, Θ, and U represent channel-based concatenation, residual block [24], and
upsample, respectively. Eventually, the head module with a residual block, upsample
operation, and a 1× 1× 1 convolution is to obtain the segmentation results

R = Conv1(U(Θ(F1))) (9)

2.3 Omission Re-detected Loss

In the multi-class segmentation task, topological interactions between different fore-
ground classes generally include two types of Containment and Exclusion according
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to [8]. Because the relationship between different hepatic segments is excluded in the
Couinaud segmentation task, we employ the convolution-based topological interaction
module [8] to go through all pairs of adjacent voxels of the result R and identify the
positions that violate the desired constraint

E(x, y, z) =
{
0, ΠR,G(x, y, z) = False,
1, ΠR,G(x, y, z) = True,

(10)

where R and G describe the segmentation result and ground truth, respectively.ΠR,G =
True denotes the prediction violate the desired constraint, while ΠR,G = False con-
versely. We re-detect the omission region E(x, y, z) and calculate the loss as follows.

We adopt a hybrid loss containing cross-entropy loss and dice coefficient loss

SL = ωDice(R,G) + ωBCE(R,G), (11)

ωDice(R,G) = 1− 2
∑
xix̂k∑

(xk) +
∑

(x̂k)
, (12)

ωBCE(R,G) = −
∑

(xk log(x̂k) + (1− xk) log(1− x̂k)), (13)

where xk and x̂k are each pixel in G and R, respectively. Finally, the total omission
re-detected Loss ORL can be describe as:

ORL = (1 + λEE(x, y, z))SL(R,G) (14)

where λE is the coefficient to measure the penalty level for the omission area.

3 Experimental settings

We collected 330 CT cases from Task08_HepaticVessel [17] in the Medical segmen-
tation Decathlon study(180 cases with hepatic vessel labels and Couinaud labels), 3D-
IRCADb-01 [18] dataset(20 cases with liver and hepatic vessel labels) and Liver Tumor
Segmentation Benchmark(LiTS) [3](130 cases with liver labels). Couinaud labels of all
150 cases from 3D-IRCADb-01 and LiTS were annotated manually by three physicians.

We used Task08_HepaticVessel and 3D-IRCADb-01 to train our FATN to segment
hepatic and portal veins of LiTS, and used 3D-IRCADb-01 and LiTS to train the net-
works [11] to obtain liver labels of Task08_HepaticVessel. The average spacing of all
cases is around (0.78,0.78,4.0)mm3 and we uniformed the size of 320 × 256 × 96 for
all cases after region-cropping. For pre-processing and data augmentation of training
data, we refer to nnU-Net [11]. The transformer layers N was 4 and the α, β, and λE
were 5, 2, and 0.4, respectively. We set the learning rate from 10−4 to 10−3 and used a
stochastic gradient descent algorithm as an optimizer with a momentum of 0.9 during
training. We divided the collected data into training and testing data according to 7:3.
The batch size, epoch, and iterations were set to 1, 500, and 1000, respectively.

We employ four popular metrics to evaluate the Couinaud segmentation of differ-
ent methods: Dice similarity coefficient (DSC), intersection over union (IoU), preci-
sion, and recall. We compare our method anatomy-aware attention transformer net-
works (AFATN) with several 3-D segmentation methods: (1) Anatomical-aware point-
voxel network (APVN) [25] which also highlights intra-hepatic veins for Couinaud
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Table 1: Quantitative comparison of the hepatic vessel and liver Couinaud segmentation.
Liver Couinaud Hepatic Vessels

Methods DSC IoU Precision Recall DSC IoU Precision Recall
APVN [25] 0.858 0.752 0.855 0.862 - - - -
3D UNet [5] 0.887 0.799 0.895 0.882 0.814 0.687 0.818 0.811
UnetR++ [16] 0.910 0.836 0.928 0.894 0.819 0.694 0.822 0.817
TransUNnet [4] 0.935 0.879 0.942 0.930 0.837 0.720 0.839 0.836
FATN-(ours) 0.927 0.864 0.931 0.924 0.829 0.709 0.832 0.828
FATN(ours) 0.949 0.888 0.941 0.940 0.840 0.724 0.839 0.842
AFATN(ours) 0.952 0.909 0.956 0.949 - - - -

segmentation, (2) 3-D UNet [5] which is a convolution-based model, (3) UnetR++ [16]
which uses U-shape transformers to extract global features, (4) TransUNnet [4] which
integrates convolution and transformer to extract local and global features with atten-
tion. Then, we conduct ablation studies to evaluate the effectiveness of our proposed
anatomy-aware processing and frequency attention module. Therefore, we compare (5)
FATN and (6) FATN-: without frequency attention. Additionally, we compare the ef-
fects of different methods on both hepatic vessels (hepatic veins and portal veins) and
liver Couinaud segmentation.

4 Results and Discussion

Results. Fig. 3 visually compares the 3-D Couinaud segmentation results of different
methods and Fig. 4 illustrates the selected 2-D slices of results. Although UnetR++ [16]
and TransUNnet [4] predict little misclassification within hepatic segments, the bound-
aries of different categories are not accurate, especially near the middle and right hep-
atic veins (according to Row 2 in Fig. 3 and Columns 1∼2 Fig. 4) and right portal
veins (according to Rows 4∼5 in Fig. 3). We can see our FATN performs better than
UnetR++ [16] and TransUNnet [4] in boundaries prediction and our AFATN can pre-
dict more accurate hepatic segment boundaries that better fit the location of the left
umbilical fissure and the hepatic and portal veins. Table 1 summarizes the quantitative
results of different models. For both hepatic vessels and liver Couinaud segmentation,
transformer-based models UnetR++ [16], TransUNnet [4], and our models perform
better than convolution-based or local feature extraction models APVN [25] and 3D
UNet [5]. Our FATN predicts higher DSC, IoU, and Recall than UnetR++ [16], Tran-
sUNnet [4], and FATN-. Meanwhile, our AFATN achieves better performance across
various metrics compared to other methods, especially in terms of precision and recall.

Discussion. This work proposes a new deep-learning framework for Couinaud seg-
mentation. The effectiveness of our method is as follows. First, our FATN extracts suf-
ficient local texture and global structure features through transformers and employs
global frequency attention to enhance the structural boundary, which is well-suited
for segmenting objects with complex boundaries. Moreover, our AFATN uses hybrid
anatomy-aware processing to extract and highlight the hybrid cues of liver contour and
intra-hepatic veins, which can be effectively utilized for more accurate boundary seg-
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UnetR++ [16] TransUNnet [4] FATN AFATN GT

Fig. 3: Visual comparison of the Couinaud segmentation. Rows 2∼5 shows a vertical
view of the result with hepatic veins, the results near the right hepatic veins, near the
middle hepatic veins and left portal veins, and near the right portal veins, respectively.

mentation. Transformer-based methods perform much better than APVN [25] and 3D
UNet [5] in our experiments since APVN uses small volumes for prediction and 3-D
UNet only extracts local features. FATN- performs better than UnetR++ [16] because it
integrates local and global features. Since both FATN and TransUNnet [4] employ at-
tention modules to enhance extracted features, they achieve better results than FATN-.
Our FATN achieves better results than TransUNnet [4] due to the effective frequency-
attention mechanism. Our approach has several limitations. First, it is difficult to ac-
curately segment some cases with irregular lesions. Moreover, the effectiveness of our
method depends on the accurate hepatic vessel segmentation. However, vessel segmen-
tation remains challenging due to the irregular distribution. Additionally, the proposed
segmentation model has a large number of parameters and a high computational cost.
We will optimize it using lightweight convolutional and self-attention modules.

Conclusion. In summary, this work proposes anatomy-aware frequency-attention
transformer networks (AFATN) using the information of liver contour and hepatic ves-
sels to achieve accurate Couinaud segmentation.
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UnetR++ [16] TransUNnet [4] FATN AFATN GT

Fig. 4: Visual comparison of the Couinaud segmentation results of 2D slices using the
four methods. Note that the red circles on the figures from top to down represent the
position of the left umbilical fissure, and the middle and right hepatic veins, respectively.
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