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Abstract. Existing semi-supervised learning methods in medical imag-
ing assume that unlabeled and labeled data share identical classes. How-
ever, in real-world medical scenarios, unlabeled datasets often contain
novel categories not present in the labeled data. To address this prob-
lem, we propose MedGCD (Generalized Category Discovery for Medical
Images), a method that identifies seen categories in labeled data and
clusters novel categories in unlabeled data. Specifically, MedGCD in-
troduces a dual stream of strong views in a weak-to-strong framework
coupled with a confidence-aware pairwise objective for discovering novel
categories. This dual view approach enhances feature extraction from un-
labeled data, while the confidence-aware pairwise objective ensures the
selection of reliable samples, enabling effective clustering of novel cate-
gories. Extensive experiments on benchmark datasets demonstrate the
effectiveness of the proposed model in discovering novel categories while
maintaining consistent performance on seen categories, with improve-
ments in novel category ranging from 4% to 15%, leading to an overall
accuracy improvement of 2% to 8%. 5
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1 Introduction

Deep learning has advanced medical imaging tasks [9], primarily in supervised
settings using large labeled datasets [21]. However, acquiring labeled data in
medical applications is often costly and challenging. Few-shot learning methods
[26] address this issue by utilizing minimal labeled samples, yet they depend
� Joint first and corresponding author.
5 https://github.com/Chandan-IITI/MedGCD
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entirely on labeled data and overlook the vast potential of unlabeled data. Semi-
Supervised Learning (SSL) [18, 20] improves performance and generalization by
utilizing the limited labeled data together with abundant unlabeled data. How-
ever, SSL operates under the assumption that labeled and unlabeled data share
identical classes (closed world learning), a condition often unmet in medical ap-
plications. New patterns, conditions, or diseases may emerge over time, leading
SSL to misclassify novel categories as known ones, resulting in poor performance.
This underscores the need for methods that can handle both seen and novel cat-
egories effectively.

Existing methods have addressed novel categories in unlabeled data (open
world learning) [16, 25, 4, 14] in diverse ways. Some reject novel categories to
protect seen performance [29, 7], while open-set recognition treats them as out-
liers [12, 10]. Zero-shot learning classifies both seen and novel categories, but
relies on semantic information [11]. Novel Category Discovery (NCD) methods
focus solely on clustering novel categories in unlabeled data [16, 14]. This paper
focuses on Generalized Category Discovery (GCD) [4, 25, 19], capable of handling
both seen and novel categories in unlabeled data without requiring additional in-
formation. While GCD methods have predominantly focused on natural images
(i.e, diverse in content), the main focus of our work lies in the intersection of
GCD and medical domain that still remains unexplored. Medical images present
unique challenges due to their focus on anatomical structures, physiological func-
tions, and pathological conditions. Current GCD methods struggle to effectively
identify novel categories in medical data, likely due to insufficient exploitation
of unlabeled data. This highlights the need for specialized models tailored to
medical images, capable of leveraging unlabeled data to improve novel category
detection, aiding in diagnosing rare diseases and atypical symptoms while main-
taining robust performance on seen categories.

To that end, we propose Medical Generalized Category Discovery (MedGCD),
a novel framework designed to harness the potential of unlabeled data by learning
accurate representations and effectively distinguishing between seen and novel
categories, thereby enhancing representation learning and generalization. Over-
all, we make the following key contributions in this paper. First, MedGCD em-
ploys a weak-to-strong perturbation framework, inspired by SSL, where weak
perturbations serve as ground truth for guiding strong perturbations. Second, to
further enhance robustness and mitigation of confirmation bias [1], we introduce
an additional strong view of the data, with both strong views sharing a common
weak view as ground truth. This dual strong-view setup generates diverse yet
consistent predictions from the same input, capturing complementary aspects
of the data distribution while minimizing the distance between them, akin to
contrastive learning known to enhance the learning of discriminative features.
Third, we propose a confidence-aware pairwise objective that focuses on sample
similarity to form cohesive clusters to improve the discovery of novel categories.
Finally, in three benchmark medical classification datasets (i.e., PathMNIST,
OrganAMNIST, and BloodMNIST), we show that MedGCD performance sig-
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nificantly surpasses state-of-the-art methods, with improvements in the accuracy
for novel categories ranging from 4% to 17% in different datasets.

2 Proposed Method: MedGCD

In the GCD setting, we have a labeled set X l
� s�xl

i, y
l
i�y

n

i�1 and an unlabeled
set X u

� sxu
i y

m

i�1, with batch sizes Bl and Bu, respectively. Here, xl
i denotes

the i
th training labeled sample and y

l
i represents its corresponding ground truth

label. Categories in the labeled set are seen categories (Cs), while those in the
unlabeled set but not in the labeled data are novel categories (Cn � Cu¯Cs). The
unlabeled data contains samples from both seen and novel categories. The goal
is to build a model that classifies samples into seen categories and assigns novel
categories to unseen samples, assuming the number of novel categories ¶Cn¶ is
known a priori.

2.1 Overview of MedGCD

Traditional semi-supervised medical image classification methods cannot iden-
tify novel categories in unlabeled data because they assume the presence of only
seen (known) categories. To address this limitation, we adapt the GCD to in-
troduce the capability of classifying novel categories from the unlabeled medical
images, and it is termed as MedGCD. We present a simple yet effective way
to utilize unlabeled data through a dual-view perturbation of the data space.
This approach helps in learning relevant and distinct feature representation for
both seen and novel categories. Upon learning the relevant feature representa-
tion, we employ a confidence-aware pairwise similarity objective that utilizes
these features to discover novel clusters in the data. The MedGCD framework
is detailed in Fig. 1, providing a comprehensive overview of its functionality
and various components. The overall objective of MedGCD is structured into
four key components: i) Margin-based cross-entropy loss (Lmce); ii) Maximum
entropy regularization loss (Lmer); iii) Dual strong weak loss (Ldsv); and iv)
Confidence-aware pairwise objective loss (Lcapo) :

L � λmceLmce � λmerLmer � λdsvLdsv � λcapoLcapo, (1)

where λmce, λmer, λdsv and λcapo represent the coefficients associated with dif-
ferent loss functions. First loss function in the above objective function is the
margin-based cross-entropy loss, denoted as Lmce, used to train the model using
labeled data. The loss function is as follows.
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Fig. 1: Illustration of the proposed MedGCD. The process begins by inputting
labeled and unlabeled datasets into model M. Unlabeled samples undergo weak
and dual strong augmentations, while labeled data only undergoes weak augmen-
tations, serving as ground truth for the dual strong view loss (Eq. 6). Nearest
neighbors are computed for each sample, and a confidence-aware pairwise ob-
jective (Eq. 7) is applied to confident pairs to discover novel categories. Labeled
data is trained using margin-based cross-entropy loss (Eq. 2) and entropy regu-
larization (Eq. 3) to avoid trivial solutions.

where T is the scaling parameter that controls the temperature of the loss, Wyl
i

denotes linear layer weights, f l
i denotes feature of i-th sample in labeled data,

margin parameter m regulates the learning process of the model by reducing
bias towards labeled data and m is computed similarly to [5]. The second loss
in the objective is the maximum entropy regularization loss (Lmer) [24, 2] that
is integrated to prevent the occurrence of trivial solutions where all unlabeled
data are assigned to a single class. It is represented as follows:

Lmer � �

m�n

=
i�1

pi logb�pi�, (3)

where pi �M�Aw�xi�� represents the probability distribution and xi � x
l
i<x

u
i .

The third and fourth loss components are detailed in the following sections.

2.2 Representation Learning using Dual-View Augmentation

To fully exploit the unlabeled data for learning effective representations, we
introduce a simple yet effective dual-view augmentation strategy. Inspired by
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recent works in semi-supervised [3] and self-supervised [6] learning, which use
multiple views to probe the perturbation space for discriminative representa-
tions, we investigate whether this strategy can benefit medical GCD tasks by
learning diverse representations essential for effective performance. To this end,
we apply two independent strong perturbations from a fixed pool [8] to the un-
labeled sample x

u, generating two distinct views, As1�xu� and As2�xu�. These
views differ due to the non-deterministic nature of the perturbation set. We uti-
lize the two strong views alongside the weak view Aw�xu�, which serves as the
ground truth, as follows:

Lu
wsj �

1

Bu

Bu

=
i�1

1�max�pwi � ' η�Hc�argmax�M�Aw�xu
i ��,M�Asj�xu

i ���,¾j � 1, 2, (4)

where Hc denotes cross-entropy, η represents a confidence threshold indicating
the value above which a pseudo-label will be selected, and p

w
i � M�Aw�xu

i ��
denotes the class distribution of the pseudo-label. Using the weak view as ground
truth for the strong views encourages consistent predictions across augmenta-
tions, helping the model focus on invariant representations and improve gener-
alization. Our ablation studies show substantial gains from dual strong views
compared to a single strong view. Even using one strong view with a weak view
as the reference significantly boosts performance in medical GCD tasks. Enforc-
ing consistency between strong views and a shared weak view also indirectly
aligns the strong views. Intuitively, this aligns with contrastive learning prin-
ciples, where the model learns to produce similar representations for different
views of the same sample (positive pairs) and distinguish between views of dif-
ferent samples (negative pairs). This approach helps the model learn robust and
distinctive representations, satisfying the InfoNCE objective [22] as follows:

LAs1
�As2 � � log

exp�As1�xu� �As2�xu��
<m

k�1 exp�Asi�xu� �Asj�xk�
,¾i, j � 1, 2, (5)

where m represents number of unlabeled samples. The final dual strong view
loss Ldsv is as follows:

Ldsv � Lu
ws1 � Lu

ws2 (6)

2.3 Discover Novel Categories Using Pairwise Objective

We propose a confidence-aware pairwise objective to cluster samples into new
categories by framing it as a pairwise similarity problem. This approach relies
on the principle that any two images either belong to the same cluster or not.
The pairwise objective aims to learn and predict the closest pairs among the
unlabeled data, facilitating the identification of new clusters. While traditional
BCE is commonly used for pairwise similarity [4], it struggles in GCD due to the
mix of seen and novel categories in unlabeled data. Samples from novel categories
may initially appear distant due to poor representations. To address this, we
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focus on pulling closer samples rather than pushing dissimilar ones and restrict
the objective to high-similarity pairs to avoid incorrect clustering. In a mini-
batch with labeled samples X l

Bl
and unlabeled samples X u

Bu
, we pair labeled

samples with others from the same class. For each unlabeled sample x
u
Bu

, we
compute its cosine similarity with all samples in the batch and select the nearest
neighbor (1-NN) x̂

u. A sample x
u
Bu

is included in the pairwise objective if its
similarity with x̂

u exceeds a confidence threshold θ. Based on this, we present a
Confidence-Aware Pairwise Objective (CAPO) given by:

Lcapo � �
1

Bl

Bl

=
i�1

log�M�Aw�xl
i��

TM�Aw�x̂l
i���

�
1

Bu

Bu

=
i�1

I�sim�fu
i , f̂

u
i �� ' θ�log�M�Aw�xu

i ��
TM�Aw�x̂u

i ��,

(7)

where f
u and f̂

u represent features of the unlabeled sample and its nearest
neighbor, respectively. θ is the confidence threshold, and sim denotes cosine
similarity. This approach ensures high-quality pairwise relationships by focusing
on reliable, high-similarity pairs.

3 Experiments and Results

Datasets. We evaluate the performance of our proposed MedGCD on three
benchmark datasets: PathMNIST, OrganAMNIST and BloodMNIST [28] com-
prising 9, 11 and 8 categories, respectively. Each dataset is split into approx-
imately 50% seen and 50% novel categories. Specifically, for PathMNIST and
OrganAMNIST, 5 categories are considered seen, while in case of BloodMNIST,
4 categories are seen, and the remaining categories as novel. Further, we consider
50% of the samples in seen category as labeled and remaining 50% as unlabeled.

Implementation Details. The proposed method was implemented in PyTorch
on an NVIDIA A40 GPU with 120 GB RAM. ResNet-18 was used as the back-
bone. Model convergence was achieved using the SGD optimizer over 200 epochs,
with a batch size of 512, learning rate of 0.1, momentum of 0.9, and weight decay
of 5e � 4. Uniform weights of 1 were assigned to λmce, λmer, λdsv, and λcapo.
Confidence thresholds θ and η were set to 0.95, and temperature T to 1.

Evaluation Metrics. For evaluation, we follow the protocol in [4]. We compute
classification accuracy for seen and clustering accuracy for novel categories, along
with Normalized Mutual Information (NMI). Clustering accuracy is determined
using the Hungarian algorithm [17]. Joint accuracy across all categories is re-
ported using clustering accuracy for both seen and novel categories.

Data Augmentation. In all experiments, MedGCD employed random horizon-
tal flipping for weak augmentation and randaugment [8] for strong augmentation.



MedGCD: Generalized Category Discovery in Medical Imaging 7

Method
PathMNIST OrganAMNIST BloodMNIST

All Seen Novel NMI All Seen Novel NMI All Seen Novel NMI
Fixmatch 47.68 70.61 35.38 25.58 57.51 90.66 56.6 53.3 48.37 73.17 49.82 38.67
DS3L 47.86 67.4 36.91 23.94 59.19 90.6 67.45 52.82 48.84 65.99 50.77 40.70
DTC 43.41 72.32 33.33 15.21 54.3 92.3 50.67 47.20 43.8 59.51 46.96 33.27
Rankstats 51.18 88.21 39.55 25.35 60.5 94.51 58.63 53.41 51.09 52.66 58.66 57.65
Rankstats+ 52.54 89.22 44.52 28.44 62.05 97.09 57.68 56.64 56.61 77.11 60.03 57.6
GCD 61.59 94.33 44.04 28.80 73.61 96.67 68.88 62.67 64.64 82.7 64.13 58.13
OpenNCD 46.71 67.34 35.17 11.82 36.11 69.45 31.94 30.12 48.7 34.37 59.31 49.05
ORCA 64.94 95.56 47.80 33.48 76.87 97.98 72.54 65.59 65.97 83.39 65.43 52.55
SimGCD 66.88 95.35 50.12 34.85 79.54 98.15 76.45 71.22 71.59 84.76 71.34 62.01

MedGCD 67.42 95.12 51.92 35.22 81.92 98.98 81.3 83.04 73.83 87.63 80.83 69.88
Table 1: Comparison of the proposed MedGCD with SOTA methods.

3.1 Comparison with State-of-the-Art Methods

We compare the performance of MedGCD with SOTA methods, including Open-
NCD [19], ORCA [4], SimGCD [27], GCD [25], Rankstats [14], Rankstats+
[15], and DTC [16]. Rankstats, Rankstats+, and DTC belong to the NCD cat-
egory, capable of identifying novel categories rather than seen ones. We extend
Rankstats, Rankstats+ and DTC to be able to classify the seen categories as well,
employing the Hungarian algorithm [17]. Additionally, we compare our results
with the popular SSL methods Fixmatch [23] and DS3L [13], which only classify
the seen categories. We extend these methods to classify the novel categories by
estimating out-of-distribution samples and applying K-means clustering.

Table 1 shows the overall accuracy (‘All’), seen accuracy, novel accuracy,
and NMI results of MedGCD compared to baseline methods. We observe that
MedGCD outperforms all the baseline methods. It should be noted that all
the baseline methods struggle to improve the accuracy of novel categories while
MedGCD achieves significant accuracy improvements, ranging from 4% to 15%
compared to ORCA, the best performing baseline across all three benchmark
datasets. Moreover, MedGCD provides upto 2% improvements on seen accuracy
compared to ORCA. Additionally, it enhances NMI measures by at least 10%
more than the best baseline in two out of the three datasets, indicating superior
cluster quality of MedGCD. Finally, it achieves an overall accuracy improvement
in the range of 2% to 8% compared to the best baseline, demonstrating the
effectiveness of MedGCD in learning superior representations from unlabeled
data to accurately classify both seen and novel categories.

3.2 Ablation

Analysis of losses. The proposed MedGCD algorithm incorporates four losses:
Lmer, Lcapo, Lmce, and Ldsv, which includes two views (Lu

ws1 and Lu
ws2). To

assess the contribution of each loss, we systematically set each to 0 and train
the model without it, evaluating its impact on performance. Table 2 shows the
effect of each loss on the OrganAMNIST dataset. The first row highlights a per-
formance drop when Lmce is removed, emphasizing its role in leveraging labeled
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data. The second row shows a decline in novel accuracy without Lmer, indicating
a bias toward seen categories. The third row reveals a 28% performance degra-
dation when Lcapo is excluded, underscoring its importance in identifying pairs
for labeled and unlabeled data. The fourth row demonstrates a 14% decrease
without Ldsv, highlighting its role in exploiting unlabeled data. These results
confirm that all losses contribute significantly to MedGCD’s performance.

Use of multiple views. We analyze the impact of number of views on model
performance using OrganAMNIST (Table 3). Increasing augmentations does not
consistently improve performance, reaching a saturation point.

Methods All Seen Novel NMI

w/o Lmce 32.80 40.82 39.02 39.33
w/o Lmer 44.54 99.86 41.95 49.61
w/o Lcapo 53.61 68.92 52.96 45.53
w/o Ldsv 67.54 96.13 64.54 60.60
w/o Lws1 71.92 98.96 72.51 75.90
w/o Lws2 71.48 95.67 69.40 71.81
MedGCD 81.92 98.98 81.30 83.04
Table 2: Ablation of different losses
on OrganAMNIST.

# Views All Seen Novel NMI

1 71.92 98.96 72.51 75.90

2 81.92 98.98 81.30 83.04
3 83.03 98.33 82.39 83.06
4 83.20 99.31 82.52 82.68

Table 3: Ablation of Views in
MedGCD on OrganAMNIST.

Analysis of different labeled ratios. We evaluate MedGCD on OrganAM-
NIST by varying labeled data percentages, with results visualized in Fig. 2.
MedGCD maintains stable performance, with slight improvements as the per-
centage of labeled classes increase.

Impact of confidence-aware threshold. We evaluated the impact of varying
the confidence-aware threshold from 0.8 to 0.99 using OrganAMNIST data, as
shown in Fig. 3. The results indicate optimal performance at a threshold of 0.95.

4 Conclusion

In this work, we proposed MedGCD to address the problem of generalized class
discovery in the medical domain, aiming to improve diagnoses and treatments for
rare, atypical, and emerging diseases, thereby enhancing patient care. MedGCD
identifies novel categories in unlabeled data while accurately classifying seen
categories by exploiting the unlabeled data via a dual strong view in a weak-
to-strong framework and a confidence-aware pairwise objective. Our extensive
experiments on benchmark medical imaging classification datasets demonstrate
the superior performance of MedGCD in discovering novel categories while main-
taining the performance on seen categories compared to state-of-the-art methods.
Limitations: The proposed method, like most existing methods, requires knowing
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Fig. 2: Ablation of labeled ratio(%). Fig. 3: Ablation by varying θ.

the number of unknown classes in advance and is not suitable for cross-domain
generalization.
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