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Abstract. Positron Emission Tomography (PET) is a powerful imag-
ing technique but involves radiation exposure due to the use of radioac-
tive tracers. A promising solution to mitigate this risk is reconstruct-
ing standard-dose PET (SPET) from low-dose PET (LPET). Previ-
ous studies have primarily focused on attenuation-corrected PET data;
however, the attenuation correction process can amplify noise and arti-
facts, especially in low-dose scenarios. Additionally, PET scans are often
paired with CT scans for attenuation correction, further contributing
to radiation exposure. To address these challenges, we propose a new
paradigm that reconstructs Attenuation-Corrected SPET (AC SPET)
and standard-dose CT (SCT) images from the original Non-Attenuation-
Corrected LPET (NAC LPET)) and low-dose CT (LCT) data through a
collaborative reconstruction framework. Key components of our proposed
method include: (1) a coarse-to-fine learning strategy, wherein special-
ized reconstruction basis is initially built by processing each modality
individually, followed by Domain Adapters to facilitate cross-modal fea-
ture correlation; (2) a hybrid Mamba-powered Expert Network that ef-
fectively captures long-range dependencies between different regions of
whole-body PET/CT images; and (3) a Physics-informed Mutual Loss
function to enforce consistency between the PET and CT domains, en-
suring robust and reliable reconstruction results. Extensive experiments
on the collected dataset demonstrate that our model achieves diagnostic-
quality reconstruction while significantly reducing radiation exposure.

Keywords: Low-dose PET/CT reconstruction · Mamba-based network
· Mutual information · PET attenuation correction.

1 Introduction

Positron Emission Tomography (PET) is a sensitive functional imaging tech-
nique that visualizes biological processes within the human body. However, PET
imaging requires the injection of radioactive tracers, which exposes patients to
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radiation that may increase the risk of cancer [9]. To mitigate such risk, a promis-
ing approach—complementary to improvement in imaging hardware—is to re-
construct high-quality standard-dose PET (SPET) images from the low-dose
PET (LPET) counterparts.

Early methods for LPET reconstruction are primarily filtering-based tech-
niques, such as non-local means [1] and bilateral filters [7]. While easy to im-
plement, these methods often produce overly smoothed images and exhibit sub-
optimal performance. Recently, deep learning-based methods have marked break-
throughs for medical image reconstruction [10, 11, 20, 22]. However, most of them
rely on traditional convolution-based architectures [19], which are inherently lim-
ited in capturing long-range, global dependencies in 3D volumetric data. More-
over, these techniques typically perform reconstruction on PET data that has
already undergone attenuation correction. The attenuation correction process
can exacerbate the accumulation of noise and artifacts in LPET images, making
it challenging to eliminate these distortions through post-processing algorithms.

Therefore, incorporating attenuation correction into the reconstruction algo-
rithm, where Attenuation-Corrected SPET (AC SPET) images are reconstructed
from the Non-Attenuation-Corrected LPET (NAC LPET) data, better aligns
with actual clinical workflows. However, due to the fact that PET attenuation
correction relies on calculating attenuation coefficients from corresponding CT
images, it also introduces additional radiation due to the required CT scanning
[14]. One potential solution to reduce the radiation risk from CT is to recon-
struct standard-dose CT (SCT) images from low-dose CT (LCT) data [2]. In the
context of CT, “low-dose” refers to adjustments in scanning parameters, such as
a lower tube current [16]. While previous research on LCT reconstruction has
primarily focused on single-modality CT imaging, limited attention has been
given to reducing radiation from CT in the context of PET/CT imaging.

Considering all factors, we propose a collaborative PET/CT reconstruction
algorithm that reconstructs AC SPET and SCT images from the original NAC
LPET and LCT images, simultaneously reducing radiation exposure from both
modalities across the entire imaging process. Specifically, our method employs a
coarse-to-fine learning framework, where a single-modal reconstruction basis is
first developed by processing PET and CT independently, followed by the inte-
gration of Domain Adapters to enhance cross-modal feature alignment. Within
this framework, we utilize a hybrid Mamba-powered Expert Network to better
extract long-range dependency from whole-body PET/CT images with a large
field-of-view (FOV). Additionally, we design a Physics-informed Mutual Loss
function to reinforce the object-specific consistency between the PET and CT
domains, ensuring robust and accurate reconstruction results.

The contributions of our work can be summarized as follows: (1) proposing a
novel PET/CT reconstruction paradigm by incorporating attenuation correction
to better align with clinical practice and minimize radiation risks from both
scans; (2) developing a dual-modality Mamba-based framework with physics-
based constraints to facilitate complementary reconstruction; and (3) validating
the effectiveness of the proposed method through extensive experiments.
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Fig. 1. Overview of the proposed method. (a) Illustration of the coarse-to-fine training
framework. (b) The detailed structure of the Mamba-based Expert Network.

2 Methodology

The pipeline of the proposed framework is presented in Fig. 1 (a). Given the
input LCT and NAC LPET, they are fed into the CT Expert Network and PET
Expert Network, respectively, for reconstruction in Stage 1. In Stage 2, we first
integrate a PET Domain Adapter to enhance the reconstruction of LCT, and
then symmetrically use the refined SCT’ to enhance the reconstruction of PET
through the CT Domain Adapter. A Physics-informed Mutual Loss (LPM) is
introduced to enforce consistency between the AC SPET’ and SCT’. Below, we
provide a detailed explanation of each component within the framework.

2.1 Coarse-to-fine Learning Strategy

PET images reflect the internal metabolic condition, while CT images accurately
represent the anatomical structure. To effectively harness the complementary na-
ture of these modalities while preserving their distinct characteristics, we propose
a coarse-to-fine learning strategy by first achieving single-modal reconstruction
and then introducing cross-modal feature alignment to enhance the synergy be-
tween the two modalities.

In the first stage, the input LCT and NAC LPET are processed through
two dedicated networks for single-modal reconstruction. By independently pro-
cessing the PET and CT images, we obtain sufficiently trained expert networks,
denoted as ECT, DCT, and EPET, DPET. This allows each modality to be handled
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according to its specific characteristics, serving as the foundation for the subse-
quent stages. In the second stage, to enhance the cross-modal feature alignment,
we draw inspiration from ControlNet [25] and introduce a Domain Adapter to
extract and fuse multi-scale features from the two imaging domains. First, the
NAC LPET is used to enhance the reconstruction of CT images. The trained
ECT is frozen in this step, while the DCT network remains trainable. The trained
EPET serves as the PET Domain Adapter to extract metabolic-related features
from the NAC LPET. The input to this process is a fusion of the NAC LPET and
zero-convolved LCT. The features extracted at each EPET layer are then passed
through zero-convolution layers and forwarded to the corresponding layers of
DCT. This allows the CT reconstruction to benefit from additional metabolic
information derived from PET while preserving the anatomical features learned
during Stage 1, ensuring more accurate alignment between the PET and CT
modalities.

A similar approach is then applied to the PET reconstruction, where the
refined SCT’ is introduced as a supplement, in line with the clinical requirement
for attenuation correction. The coarse-to-fine strategy effectively integrates the
modality-specific enhancements with cross-modal refinement, ultimately leading
to improved reconstructions for both PET and CT images.

2.2 Expert Modeling with Mamba Blocks

Considering the 3D nature of PET and CT images, long-range feature de-
pendencies within the volumetric data are inherently complex. Conventional
convolution-based networks are limited in their ability to extract long-range in-
formation from high-resolution 3D medical images due to the locality of their
receptive fields. To address the challenges of long-sequence modeling, inspired
by previous studies [6, 23], we propose a Mamba-based Expert Network, which
retains the U-shaped architecture but integrates Mamba blocks to replace the
original convolutional blocks in the encoder.

As shown in Fig. 1 (b), each Mamba block begins with a Gated Spatial Con-
volution (GSC) module. The GSC module plays a key role in controlling the
flow of information through a gating mechanism [13], which selectively enhances
or suppresses spatial features based on their relevance. This ensures that the
network only focuses on the most informative features, thereby reducing redun-
dancy in feature representation. To capture long-range dependencies from 3D
features, the network integrates a Tri-orientated Mamba layer, which computes
feature dependencies from three directions: forward, reverse, and inter-slice. The
input features are first flattened into these three sequences for feature interac-
tion and then summed up to merge the features into a fused representation. This
approach enhances the network’s ability to process complex volumetric data, en-
suring comprehensive local and global contextual information modeling.

The decoder side maintains a typical design with up-sampling blocks, which
consists of a residual connection to merge features learned in previous layers
and transposed convolutions to recover spatial dimensions. The overall design
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enables the network to fully exploit spatial features across the entire 3D volume,
capturing both local details and global relationships.

2.3 Mutual Consistency for PET/CT Alignment

While the coarse-to-fine learning strategy facilitates reconstruction by sharing
complementary information between the two modalities, it is essential to main-
tain physical consistency between the anatomical details provided by CT and
the metabolic information provided by PET. To achieve this, we introduce a
Physics-informed Mutual Loss (LPM) to encourage the network to align both
modalities in the final PET refinement stage.

The physical consistency is measured by calculating the mutual information
[18] between paired PET and CT, which reflects the degree of statistical de-
pendence and shared information between the two modalities. By minimizing
the discrepancy in mutual information between the predicted and ground-truth
PET-CT pairs, our proposed Physics-informed Mutual Loss enforces subject-
specific consistency, thereby improving the accuracy and reliability of the recon-
structed images. Formally, the LPM can be expressed as:

LPM =
∣∣∣I(P̂ , Ĉ)− I(P,C)

∣∣∣ , (1)

where P̂ and Ĉ represent the predicted PET and CT images, while P and C
denote the ground-truth PET and CT images, respectively. I(., .) represents the
mutual information between the two modalities. To also account for voxel-wise
accuracy, the final loss function is a weighted combination of three components:
L1 loss, L2 loss, and the Physics-informed Mutual Loss.

Ltotal = λ1L1 + λ2L2 + λ3LPM, (2)

where λ1, λ2, and λ3 are the weighting factors used to control the contribution of
each loss term to the final objective. By minimizing this total loss, the network
is encouraged to generate high-quality PET images with voxel-wise accuracy to
the ground-truth and also anatomical consistency with the CT.

3 Experiments

3.1 Dataset and Implementation Details

We collect 251 samples from The Cancer Imaging Archive (TCIA) 4 Non-Small
Cell Lung Cancer (NSCLC) collection [12], with 200 samples used for training, 26
for validation, and 25 for testing. Each sample includes co-registered whole-body
scans of SCT, SPET, and NAC SPET. We follow the sparse-sampling strategy
to simulate LCT [8], where the SCT data is projected into a sinogram using
the Radon transform and then uniformly downsampled by selecting every 5th
4 https://www.cancerimagingarchive.net/collections/
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AC SPET NAC LPET 3D U-Net 3D c-GAN 3D DDPM ProposedAIGAN MVAE

SCT LCT 3D U-Net 3D c-GAN 3D DDPM ProposedAIGAN MVAE

Fig. 2. Visual comparison of reconstructed PET (1st row) and CT (3rd row) images
produced by six different methods. The corresponding error maps between the gener-
ated results and the ground truth are shown in the 2nd and 4th rows, respectively. Key
regions of interest are indicated by the blue arrows.

projection. This sparse sinogram is subsequently reconstructed using the inverse
Radon transform with the reduced-angle projections. To simulate the reduced
signal and increased noise characteristic of NAC LPET, Poisson noise is added
to the sinogram of NAC SPET [15], with the intensity scaled by a factor of 100,
mimicking the effects of reduced radiation exposure during data acquisition. The
simulation approaches have demonstrated strong correlation with real low-dose
outcomes, enabling our experiments to closely approximate real-world scenarios.
For consistency across all scans in our experiments, we resample the data to a
voxel spacing of 2×2×2 mm3 and re-scaled the intensity values to the range [0, 1].
Each scan is then cropped into patches of size 128×128×128 voxels to fit within
the memory limitations. To achieve full FOV output, consecutive outputs from
each sample are stitched into a single volume, with overlapping regions averaged
to preserve consistency.

Our model is implemented using the PyTorch framework and trained on an
Nvidia Tesla A100 80GB GPU. The weighting factors λ1, λ2, and λ3 in Eq. 2 are
initialized to 0.4, 0.4, and 0.2, respectively. We employ the Adam optimizer with
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Table 1. Quantitative comparison of our method with five state-of-the-art generation
methods, in terms of PSNR [dB] and SSIM [%].

Method PET CT

SSIM PSNR SSIM PSNR

3D U-Net [3] 90.75 (2.35) 31.52 (2.98) 91.62 (1.76) 31.81 (2.02)
3D c-GAN [21] 93.36 (1.63) 33.59 (2.04) 93.86 (1.51) 33.60 (1.98)
3D DDPM [24] 94.25 (1.21) 34.41 (1.73) 95.72 (0.90) 35.78 (1.53)

AIGAN [5] 95.19 (1.40) 35.33 (1.86) 96.05 (1.16) 36.11 (1.94)
MVAE [17] 95.84 (1.29) 35.87 (1.97) 96.90 (0.95) 36.45 (1.47)
Proposed 96.73 (1.08) 36.44 (1.86) 97.32 (0.84) 37.19 (1.33)

a learning rate of 0.0001. Validation is performed every 5 epochs, and the best
model is selected based on its performance on the validation set. The quantitative
evaluation of the model’s performance is carried out using two metrics: Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM).

3.2 Comparison Experiments

We compare our proposed method with five state-of-the-art approaches, includ-
ing single-modality methods: 3D U-Net [4], 3D-cGAN [21], and 3D DDPM [24];
and dual-modality methods: AIGAN [5] and MVAE [17]. All comparison meth-
ods, as well as our proposed method, are implemented using a consistent data
processing pipeline. The quantitative results are presented in Table 1, while the
qualitative results are shown in Fig. 2.

Quantitative Evaluation The results presented in Table 1 highlight the su-
perior performance of our method compared to five state-of-the-art approaches.
Our method achieves the highest PSNR and SSIM values for both PET and CT
reconstructions, with PET SSIM at 96.73% and CT SSIM at 97.32%. Sim-
ilarly, for PSNR, our method attains 36.44 dB for PET and 37.19 dB for
CT, outperforming the closest competitor, MVAE, by margins of 0.57 dB and
0.74 dB, respectively. Notably, our method also exhibits the smallest standard
deviations across all metrics, demonstrating its stability and consistency. These
improvements can be attributed to the proposed collaborative reconstruction
framework, which effectively leverages cross-modal information and advanced
feature modeling. The results underscore the robustness of our approach, mak-
ing it a promising solution for real-world clinical applications.

Qualitative Evaluation The visualization results of the reconstructed PET
and CT images using different methods are shown in Fig. 2. Our proposed
method demonstrates its capability to reconstruct PET and CT images with
the least noise while retaining detailed texture. This is particularly attributed to
the incorporation of the Mamba-based Expert Network, which effectively cap-
tures long-range dependencies across the entire 3D volume, leading to clearer and
more accurate reconstructions. Meanwhile, the error maps for the PET and CT
images reconstructed by our method exhibit the lightest color, reflecting a closer
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Table 2. Quantitative results of ablation study, in terms of PSNR [dB] and SSIM [%].

Method PET CT

SSIM PSNR SSIM PSNR

M1 93.63 (1.86) 34.45 (2.43) 95.81 (1.09) 36.94 (1.78)
M2 94.58 (1.19) 35.09 (2.27) 96.64 (0.92) 37.62 (1.56)
M3 96.15 (1.13) 36.13 (1.95) 97.32 (0.84) 38.19 (1.33)
M4 96.73 (1.08) 36.44 (1.86) 97.32 (0.84) 38.19 (1.33)

match to the AC SPET and SCT images. This indicates that combining single-
modal reconstruction with cross-modal refinement, the coarse-to-fine learning
strategy significantly improves the reconstruction quality. Together, these ob-
servations validate the effectiveness of our proposed method and highlight its
superior performance over state-of-the-art approaches in terms of both image
quality and accuracy.

3.3 Ablation Study

To evaluate the effectiveness of each proposed strategy, we conduct ablation
studies with four models: 1) M1: Base model without Mamba blocks; 2) M2:
Mamba-based Expert Model without the coarse-to-fine strategy; 3) M3: Mamba-
based Expert Model with the coarse-to-fine strategy but without the Physics-
informed Mutual Loss; and 4) M4: Mamba-based Expert Model with both the
coarse-to-fine strategy and the mutual consistency loss. All methods are tested
under the same experimental settings, with quantitative results shown in Table 2.

The results in Table 2 show that including Mamba blocks (M2) leads to no-
table improvements in reconstruction quality, as evidenced by the higher SSIM
and PSNR values for both PET and CT images. This enhancement can be at-
tributed to the Mamba blocks’ ability to capture long-range dependencies, which
is crucial to preserving fine details and global structures. Introducing the coarse-
to-fine strategy (M3) further refines the reconstruction, particularly in SSIM for
CT (97.32%). This suggests that the coarse-to-fine approach effectively leverages
complementary PET and CT information, resulting in more accurate and sta-
ble reconstructions. The inclusion of the Physics-informed Mutual Consistency
loss (M4) further improves PET reconstruction, achieving the highest SSIM and
PSNR values among all configurations. Note that CT reconstruction is completed
within the M3 setting, which is why the CT metrics remain unchanged in M4.
This highlights the critical role of aligning anatomical and metabolic features
between the two modalities, ensuring more accurate and consistent reconstruc-
tions. These findings demonstrate the positive contribution of each component to
enhancing PET/CT reconstruction quality, with the full model (M4) achieving
the best overall results.
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4 Conclusion

In this paper, we propose a novel approach to reduce radiation exposure from
both PET and its accompanying CT scans during image acquisition by collabo-
ratively reconstructing NAC LPET and LCT images. To achieve this, we design a
coarse-to-fine learning framework that effectively leverages PET and CT’s com-
plementarity for more stable and accurate reconstruction. Furthermore, within
this framework, we introduce a Mamba-based Expert Network and a Physics-
based Mutual Loss to capture long-range dependencies in whole-body PET/CT
volumes and enhance consistency between the PET and CT domains, thereby
improving reconstruction performance. Extensive experiments validate the ef-
fectiveness of our approach, offering a promising solution for achieving more
efficient and safer PET/CT acquisition.
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