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Abstract. Collapse of the femoral head is a critical event in osteonecro-
sis (ONFH) that often leads to debilitating hip pain and necessitates
total hip arthroplasty. Early and accurate prediction of collapse risk is
crucial for personalized treatment planning. While many studies focus
on the automated diagnosis of ONFH, prognosis remains less explored.
In this study, we propose a robust tri-stream deep learning framework
that extracts features from T1-weighted MRI, region-of-interest (ROI)
labels, and ONFH grades to estimate patient-specific collapse risk. We
introduce an independent Spatial Label Encoder (SLE) module that to-
kenizes discrete ROI labels into dense, context-rich embeddings, thereby
facilitating multi-modality model training. Experiments on 92 hips (70
patients) show that our approach performs competitively with state-of-
the-art (SOTA) methods across most metrics, achieving a concordance
index (CI) of 0.847±0.087 and an integrated AUC of 0.884 in 5-fold cross-
validation. Notably, the SLE module enhances long-term discrimination
by up to 2.4% on AUC at 60 months compared to our base network.
These findings highlight the potential benefits of late-fusion strategies
with label tokenization for predicting femoral head collapse in ONFH,
contributing to improved early intervention and prognosis.

Keywords: Survival Prediction · Osteonecrosis of the Femoral Head ·
Representation Learning · Deep Survival Model.

1 Introduction

Osteonecrosis of the femoral head (ONFH) is a major health concern among
young and middle-aged individuals, often leading to severe hip pain and dys-
function as it progresses toward femoral head collapse [2, 5]. Since collapse is a

⋆ Currently at Department of Mathematical and AI Medical Science, Nara Medical
University.



2 G. Li et al.

Fig. 1. Representative samples from our ONFH dataset, each annotated with multiple
grade labels from different grading systems due to the lack of a universal standard.
The severity of ONFH increases from left to right across the four samples.

pivotal turning point in ONFH, timely risk assessment is crucial for determining
whether patients may benefit from conservative treatment or require immediate
hip preservation surgery, such as total hip arthroplasty (THA) [8, 12]. Figure 1
illustrates representative samples of ONFH severity progression, central to our
study on femoral head collapse prediction. While many recent studies focus on
diagnosing ONFH, the risk of subsequent femoral head collapse is often over-
looked [11, 20]. Although manual risk assessment methods have been proposed
for prognostic studies of ONFH, they are time-consuming and prone to observer
variability. As a result, automated deep learning approaches have gained atten-
tion for their efficiency and consistency [6].

A key challenge in predicting ONFH femoral head collapse risk is accurately
modeling the relationship between the risk score and its covariates (e.g., patient
data). Conventional survival prediction often relies on predefined Radiomics-
based features derived from segmented regions of interest (ROI) [26], which
is then processed by either statistical models (e.g., Cox Proportional Hazard
(CoxPH) [3]) or machine learning models (e.g., survival support vector machine
(SVM) [25]). Recent studies have proposed deep learning-based survival models
with fusion mechanisms to better capture complex associations between covari-
ates and survival outcomes. These methods employ various convolutional neural
networks (CNNs)- or transformer-based encoders to leverage latent informa-
tion from multimodal data such as radiological scans, electronic health records
(EHR), and whole slide images (WSI) [21, 22, 27].

However, the presence of limited follow-up data (i.e., right-censored data)
poses a challenge to the performance of survival prediction models. To address
this, Qu et al. [19] introduced an auxiliary network to estimate hazards for cen-
sored intervals by leveraging statistics from uncensored and extended follow-up
samples. In contrast, SurvRNC [22] captures inter- and intra-class relationships
among censored and uncensored samples through representation alignments in
survival-time order. Despite these advancements, both approaches rely on early-
fusion strategies (e.g., concatenating multimodal images or spatial segmentations



Femoral Head Collapse Risk Prediction 3

at the input stage) to integrate multi-modality or region-specific features. While
recent studies highlight the importance of region-specific information, such as
the joint learning of segmentation and prognosis tasks [15] or the early fusion
of ROI labels and images [24], few have explored late-fusion techniques that
incorporate tokenized semantic label features to enhance modality alignment.

In this paper, we propose a robust framework for predicting femoral head
collapse in ONFH patients by extracting latent representations from pre-collapse
MRI scans, segmentation masks, and tabular grades using a tri-stream encoder.
These representations are fused via a multilayer perceptron (MLP). In addition,
a lightweight Spatial Label Encoder (SLE) that parses discrete semantic labels
into learnable embeddings is proposed. This design yields compact, context-
rich representations of label distributions that can be seamlessly integrated with
image-based features for survival analysis.

The contributions of this paper are three-fold: 1) to the best of our knowledge,
this is the first general survival analysis framework for multi-modality femoral
head collapse risk prediction, which could facilitate personalized surgical plan-
ning (e.g., THA) for ONFH patients; 2) the impact of incorporating the proposed
SLE module is assessed on both our model and a state-of-the-art (SOTA) deep
learning model, showing consistent performance gains; 3) the effectiveness of the
proposed framework is demonstrated and compared with several SOTA methods
using a 92-case MRI dataset of pre-collapse ONFH hips.

2 Method

2.1 Dataset and Preprocessing

We retrospectively collected T1-weighted MRI scans from the first hospital visit
of 70 patients with ONFH, covering 92 hips (Japanese Investigation Committee
(JIC) classification: 52 hips in stage 1, 40 in stage 2), as illustrated in Figure 1. All
MRI scans were bisected and flipped to the right for left hip targets, resulting
in volumes of shape (128, 256, n) with voxel spacing (1.25, 1.25, 1) mm, where
n ∈ [54, 159]. Among these, 63 hips were manually annotated by an experienced
orthopedic surgeon, while the remaining 29 were automatically segmented using
a Dynamic U-Net [9, 1] trained on the labeled cases. The mean Dice coefficients
for the pelvis, femur, and necrosis were 0.931, 0.945, and 0.890, respectively.
Since no universal ONFH grading standard exists, each hip was assigned multiple
classifications: JIC stage, JIC type, Association Research Circulation Osseous
classification (ARCO), Spherical Approximation Steinberg grade, and Steinberg
classification [23]. To address the modest dataset size and ensure robust findings,
all experiments employed a strict patient-level 5-fold cross-validation. We are also
working to secure permissions to release the data publicly in the future.

Femoral head collapse during the study period was considered the event of
interest, with time-to-event measured from the first visit to either the occurrence
of collapse (uncensored data) or the last available follow-up (right-censored).
Approximately 47% of patients had uncensored data, with time-to-event ranging
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Fig. 2. Framework overview: a. Spatial Label Encoder maps discrete class labels to
n-dim learnable vectors and extracts spatial and inter-class features in a ViT-like man-
ner. b. ONFH Grade Embedder tokenizes categorical grading inputs and projects
the tokens into grade features. c. Risk Prediction Network predicts the risk of
femoral head collapse using the patient’s MRI scans, ROI labels, and ONFH grades.

from 1 to 174 months. The median time-to-event was 12 months (IQR: 3.5–33
months), with 90% of events occurring within 82 months.

2.2 Femoral Head Collapse Risk Prediction

Problem Statement This task aims to predict the risk of femoral head collapse
in ONFH hips using multimodal data: MRI scans ximg of size (H,W,D), ROI la-
bels xlbl, and ONFH grades xgrade. We denote our dataset by D = {H1, . . . ,HN},
where each hip Hi comprises features Xi = (ximg

i , xlbl
i , xgrade

i ), an event indica-
tor ei (0 for censored, 1 for uncensored), and a time-to-event Ti. The objective
is to train a deep network f to predict a risk score u = f(X) (with higher val-
ues indicating a worse prognosis), which can be further interpreted by survival
functions S(t | X) (e.g., via the Kaplan-Meier estimator [10]).

Spatial Label Encoder Given a 3D image and its ROI label, a standard
approach is to concatenate the scalar or one-hot label with the image to get
X = [ximg;xlbl] in an early fusion mechanism. While intuitive and straightfor-
ward, this approach has two drawbacks: 1) the discrete and sparse nature of
categorical labels introduces redundancy, especially in multi-class settings [29,
28]; and 2) early fusion can lead to insufficient intra-modality information due to
entangled (concatenated) features [15]. To address these issues, we propose SLE
that tokenizes the discrete multi-class label map and encodes it with a shallow
vision transformer (ViT) [4], as illustrated in Figure 2a. Given a scalar-valued
label map xlbl ∈ R1×H×W×D, an embedding matrix W (lbl) ∈ RC×d maps each
class index c to a d-dimensional vector vcls = W (lbl)[c], yielding a rich, learnable
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representation compared to sparse one-hot labels. The embedded labels x(lbl)
emb are

then passed through a shallow ViT, and the attention pooling filters out low-
information patches, producing a final label feature zlbl ∈ Rdlbl

for downstream
fusion:

x
(lbl)
emb = W (lbl)(xlbl) ∈ Rd×H×W×D (1)

zlbl = ViT(PatchEmbed(x(lbl)
emb)) ∈ Rdlbl

(2)

The class tokenization supports the established idea that high-dimensional,
continuous features enhance a model’s ability to capture subtle variations [17,
13], while the ViT-like module provides a spatially rich representation of label
distributions. Since the SLE is an independent module, it supports late-fusion
frameworks and can be seamlessly integrated into other SOTA methods.

ONFH Grade Embedder This module follows the same scalar-value tok-
enization concept in SLE and leverages the Feature Tokenizer Transformer (FT-
Transformer) [7] for categorical value embedding, as illustrated in Figure 2.b.
Given a categorical index xgrade

j , where j ∈ {1, 2, . . . , G} (and G is the number
of grade systems), we define:

z
(grade)
j = b

(cat)
j +W

(cat)
j

(
xgrade
j

)
∈ Rd, (3)

zgrade = fproj
(
[z

(grade)
1 ; z

(grade)
2 ; . . . ; z

(grade)
G ]

)
∈ Rdgrade

, (4)

where b
(cat)
j represents the bias feature in the j-th categorical system, fproj de-

notes a linear projection, and zgrade is the embedded grading feature of dimen-
sion dgrade.

Proposed Framework Figure 2.c demonstrates the overall risk prediction net-
work. A tri-stream encoder, consisting of CNN-based vision encoder (shallow
ResNet-18) fCNN , SLE fSLE , and ONFH grade embedder fOGE , takes input
X = [ximg, xlbl, xgrade] and outputs zimg ∈ Rdimg

, zlbl, and zgrade, respectively.
The three feature vectors are then fused by simple concatenation and passed
to a 2-layer MLP to get feature representations zout, and the final output risk
score u is predicted from zout through a dense output layer. To optimize model
parameters, we combine the negative partial log-likelihood loss LNPLL(u, e, T )
[3] with an ordered representation alignment loss LSurvRNC(·) [22], where anchor,
positive, and negative embeddings (zouta , zoutp , {zoutk }k∈Na,p

) enforce ordinal con-
straints. The total loss is:LTotal = LNPLL + λ ∗ LSurvRNC, with λ empirically set
to 0.5.

2.3 Evaluation Metrics

Four metrics were used to thoroughly evaluate our method: the concordance in-
dex (CI), the time-dependent Area Under the Curve (AUC(t)), the Integrated
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Table 1. Performance of different SOTA survival prediction methods on a 5-fold cross-
validation evaluation. The best prediction values are shown in bold. Note that ∗CoxPH
was trained only by ONFH grades.

Metrics → CI ↑ AUC(t) ↑ iAUC ↑

Methods↓ 6(m) 12(m) 36(m) 60(m) 120(m) 12∼120(m)

CoxPH∗ [3] 0.820±0.059 0.875±0.061 0.869±0.082 0.872±0.070 0.853±0.108 0.852±0.108 0.860±0.096
SurvivalSVM [25] 0.781±0.095 0.829±0.160 0.856±0.168 0.882±0.106 0.858±0.073 0.806±0.103 0.851±0.081

DeepMTS [16] 0.824±0.093 0.825±0.107 0.841±0.111 0.857±0.075 0.867±0.069 0.840±0.111 0.861±0.078
XSurv [15] 0.822±0.068 0.878±0.080 0.912±0.064 0.920±0.065 0.856±0.079 0.783±0.139 0.865±0.081
SurvRNC [22] 0.832±0.094 0.877±0.086 0.878±0.122 0.863±0.078 0.868±0.104 0.858±0.132 0.869±0.103
Ours (w/o SLE) 0.838±0.076 0.879±0.101 0.885±0.136 0.874±0.077 0.853±0.087 0.866±0.117 0.866±0.091

SurvRNC (w SLE) 0.841±0.088 0.879±0.096 0.894±0.120 0.875±0.071 0.868±0.102 0.860±0.120 0.873±0.098
Ours (w SLE) 0.847±0.087 0.883±0.105 0.885±0.122 0.880±0.068 0.877±0.085 0.883±0.106 0.884±0.085

AUC (iAUC), and KM analysis. CI, as the primary metric, measures the model’s
overall discriminative power (ranging from 0 to 1). In contrast, AUC(t) evalu-
ates the model’s time-specific discrimination ability to distinguish individuals
who experience an event before time t versus those surviving beyond t. iAUC
is the aggregated version of AUC(t) that reflects overall discrimination ability
over a time range [tmin, tmax]. Finally, KM analysis determines the stratification
efficacy of the model by dividing patients into high-risk and low-risk groups.

3 Experiments and Results

3.1 Baselines and Configurations

To evaluate the validity of our proposed method, we conducted comparative
experiments with several SOTA multi-modality networks that use 3D medical
images as their primary input. Specifically, we assessed DeepMTS [16], XSurv
[15], and SurvRNC [22] using a 5-fold patient-wise cross-validation on our femoral
head collapse dataset. During training, 20% of the hip joints were set aside as
the validation set for each fold. For a fair comparison, we replaced the origi-
nal models’ sub-modalities and clinical indicators with comparable sources of
collapse-related information (as used by [6] for ROI labels and [2] for ONFH
grades). Additionally, we compared our method with two conventional survival
models, CoxPH and SurvivalSVM, using Radiomics features to represent both
image and label modalities. Radiomics feature extraction and selection followed
the preprocessing pipeline described in [15, 6]. For all methods (both classical
and deep learning), we report only the highest evaluation scores across different
modality combinations.

All deep learning models were fine-tuned based on their default hyperpa-
rameters and survival losses (LNPLL or LTotal), trained and tested on a com-
puting device with an Intel Xeon W-2295 @3.00GHz CPU, 125GB RAM, and
an NVIDIA A6000 GPU (48 GB) using PyTorch [18] version 2.0.1 with CUDA
11.8. Each model underwent the same data augmentations and was trained for
310 epochs with a batch size of 16, a learning rate of 4× 10−5, and the AdamW
optimizer [14] (weight decay of 10−4).
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Fig. 3. KM analysis for CoxPH and deep learning methods on our ONFH dataset. Our
full method with SLE achieves the best p-value in the log-rank test while our base
network demonstrates the best stratification ability at the end of the censor duration.

To further validate our approach, we tested our method with the SLE mod-
ule replaced by early fusion to confirm the effectiveness of the base network.
Additionally, we integrated our SLE module into SurvRNC to demonstrate its
adaptability and efficacy. For our proposed method, the dimensions dimg, dlbl,
and dgrade were empirically set to 128, 128, and 64, respectively.

3.2 Results and Discussions

Table 1 compares the performance of all methods across three metrics. Notably,
CoxPH achieves its best performance when trained solely on categorical ONFH
grades, whereas other methods require all modalities. Our proposed base network
(w/o SLE) achieves the highest CI (0.838) among previous methods and demon-
strates strong short- to mid-term AUC (t ≤ 36), highlighting the effectiveness of
tokenization-based embedding for tabular data. When integrated with SLE, our
method addresses the long-term discrimination issue (t = 60, 120) and shows
improvements over most metrics (except mid-term t = 12, 36). In particular,
AUC(60) increases by 0.024, AUC(120) by 0.017, and iAUC by 0.018. Adding
SLE to the second-best (w/o SLE) method SurvRNC also improves all metrics,
suggesting enhanced feature representation while maintaining model stability.

Regarding baseline methods, CoxPH serves as a strong competitor when
trained only on categorical ONFH grades, aligning with previous studies [22, 15]
given the close relationship between disease grades and ONFH prognosis [6]. In
contrast, SurvivalSVM performs the worst on CI, likely due to convergence fail-
ure by the limited amount of trainable data. Among deep learning approaches,
DeepMTS slightly outperforms CoxPH on CI but performs worse in AUC, pos-
sibly due to its entangled volume inputs and its original multitask design. XSurv
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achieves the highest mid-term AUC(36) at 0.92, which may benefit from its dual
symmetric encoder of the same perception field for volumes from two modali-
ties with aligned spatial information [27]. However, the deeper network is more
sensitive to a small, right-skewed dataset (as is common with uncensored data
in medical scenarios), resulting in poorer long-term AUC. SurvRNC, despite
employing early fusion, provides balanced results across different time windows
thanks to its effective representation alignment loss LSurvRNC. Our proposed
method integrates key multimodal mechanisms from previous SOTA approaches
while addressing their limitations by: 1) disentangling spatial modalities via mul-
tiple lightweight encoders for late fusion, 2) facilitating implicit cross-modality
alignment by maintaining tokenizers in the SLE and ONFH grade encoders, and
3) aligning representation in survival-time order through LSurvRNC.

To further assess stratification efficacy, Fig. 3 presents KM curves for CoxPH
and various deep learning methods, with shaded regions indicating confidence
intervals. The log-rank test p-values confirm statistically significant differences
between risk groups. While our base network shows a larger discrepancy at the
final time (t > 174), incorporating SLE results in a smaller p-value between risk
groups. Our full method with SLE also yields a more stable survival curve for t <
60 in the low-risk group and a steeper early decline in the high-risk group, leading
to a more distinct separation between risk groups earlier, which is clinically
valuable for predicting femoral head collapse where timely intervention is critical.
These findings align with the numerical estimates in Table 1, demonstrating a
moderate overall advantage of our approach over other SOTA methods on the
ONFH dataset, as reflected by lower p-values and earlier curve separation.

3.3 Limitations and Future Works

The proposed framework has two main limitations. First, our study is based on
a small, single-center retrospective dataset, which may impact the generalizabil-
ity of the evaluated methods. Some ground-truth labels may also contain noise
due to reliance on automated segmentation. Second, all modalities in our exper-
iments are pre-aligned temporally, and volume-based modalities (MRI and its
embedded ROI labels) are also spatially aligned in advance. The impact of these
alignments requires further investigation, particularly in the context of follow-up
data integration of different modalities and positioning.

Future work will focus on enhancing robustness by incorporating external
datasets and mitigating label noise through uncertainty-aware modeling. We
also plan to integrate additional imaging modalities with diverse spatial and
temporal characteristics (e.g., X-ray and follow-up Computed Tomography) to
further assess the model’s generalizability. Moreover, a comprehensive analysis of
each modality’s contribution is needed. Further refinements to the framework will
aim to maximize the benefits of SLE. Lastly, ongoing follow-up data collection
will support more comprehensive comparisons in future studies.
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4 Conclusions

This study presents a tri-stream framework1 that integrates MRI scans, ROI
labels, and ONFH grades to predict femoral head collapse risk, while also evalu-
ating several SOTA multi-modality methods in this context. By combining label
tokenization and time-ordered representation alignments, our approach reduces
the redundancy of scalar or one-hot multi-class labels while facilitating implicit
cross-modality alignment. The proposed SLE has demonstrated promising and
consistent improvements, suggesting its potential as an enhanced label-encoding
strategy. While further validation is required, our framework provides a struc-
tured and robust baseline for ONFH prognosis, with the potential to aid early
clinical interventions and advance research in personalized medicine.
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