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Abstract. In free-hand ultrasound imaging, sonographers rely on exper-
tise to mentally integrate partial 2D views into 3D anatomical shapes.
Shape reconstruction can assist clinicians in this process. Central to this
task is the choice of shape representation, as it determines how accu-
rately and efficiently the structure can be visualized, analyzed, and in-
terpreted. Implicit representations, such as SDF and occupancy func-
tion, offer a powerful alternative to traditional voxel- or mesh-based
methods by modeling continuous, smooth surfaces with compact stor-
age, avoiding explicit discretization. Recent studies demonstrate that
SDF can be effectively optimized using annotations derived from seg-
mented B-mode ultrasound images. Yet, these approaches hinge on pre-
cise annotations, overlooking the rich acoustic information embedded in
B-mode intensity. Moreover, implicit representation approaches struggle
with the ultrasound’s view-dependent nature and acoustic shadowing ar-
tifacts, which impair reconstruction. To address the problems resulting
from occlusions and annotation dependency, we propose an occupancy-
based representation and introduce Ultrasound Occupancy Network (Ul-
trON) that leverages acoustic features to improve geometric consistency
in weakly-supervised optimization regime. We show that these features
can be obtained from B-mode images without additional annotation cost.
Moreover, we propose a novel loss function that compensates for view-
dependency in the B-mode images and facilitates occupancy optimiza-
tion from multiview ultrasound. By incorporating acoustic properties,
UltrON generalizes to shapes of the same anatomy. We show that UltrON
mitigates the limitations of occlusions and sparse labeling and paves the
way for more accurate 3D reconstruction. Code and dataset is available
at https://github.com/magdalena-wysocki/ultron.

Keywords: Ultrasound · Implicit Neural Representation · Surface Re-
construction.
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1 Introduction

Fig. 1. (a) The method uses multiview ultrasound scans. We use row and column
scans as proposed in RoCoSDF [3] and tilted scans as proposed in Ultra-NeRF [16].
(b) Occlusions in ultrasound B-mode imaging create partial observations. The regions
in acoustic shadow (gray) are undefined. (c) Because of the occlusions we can define
only the partial shape (green).

In conventional free-hand ultrasound imaging, sonographers must rely on
their expertise to mentally reconstruct the 3D shape of organs or structures from
partial 2D views in order to extract the necessary anatomical information for
diagnosis or intervention. Shape reconstruction in medical ultrasound, can help
clinicians in this task by enhanced visualization of a target structure. In the field
of computer vision, objects can be represented through a diverse array of shape
representations. Among them, implicit shape representations provide a method
for representing 3D shapes as an implicit function defining the surface of an
object. Unlike conventional representations such as meshes, point clouds, or voxel
grids, implicit representations map spatial coordinates to a continuous function
that describes the shape [11]. Implicit Neural Representation of Shapes (INRS)
is a deep-learning-based technique for approximating implicit shape functions.
The key concept is that the function is parameterized by a neural network. INRS
inherently provides a continuous representation, allowing it to capture fine details
at any resolution without increasing memory usage. These representations define
inherently smooth surfaces, making them useful for tasks requiring seamless
shape transformations [19]. Moreover, they enable learning families of shapes,
facilitating the generation of novel shapes [18], [8]. Among INRS methods, Deep
Signed Distance Field (SDF) [13] and Occupancy Network (ON) [10] are two
widely used approaches. In medical ultrasound, recent methods—UNSR [4] and
RoCoSDF [3] —leverage SDF-based neural networks to represent anatomical
structures from B-mode images. While UNSR relies on single-view ultrasound
data, RoCoSDF demonstrates that incorporating multiple ultrasound views leads
to more precise 3D shape reconstruction.
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Multiview ultrasound scanning, as shown in Fig 1(a) combines perspectives
from various angles, providing a more complete spatial representation and bet-
ter visualization of complex anatomical structures. However, non-tomographic
modalities like ultrasound B-mode imaging are inherently view-dependent and
susceptible to acoustic shadowing occlusions, yielding only fragmented obser-
vations of the volume [5]. The direction-dependent characteristics of ultrasound
imaging create additional challenges for learning a shape representation, as scan-
ning the same target from different directions can result in varying signal inten-
sities in the same spatial location. Moreover, occlusions, visualized in Fig 1(b),
make the regions under acoustic shadows undefined, therefore the shape can be
only defined in the observed space (Fig 1(c)). Since UNSR and RoCoSDF rely
on densely annotated B-mode images for accuracy, they may encounter issues
with occlusions, annotation errors, and partial annotations, which are common
in B-mode imaging.

In this paper we propose UltrON a novel INRS for ultrasound that integrates
acoustic features obtained from B-mode intensities into the representation to
address the issues of annotation cost and accuracy. Our contributions can be
summarized as followed:

– We demonstrate that by using the information in the B-mode intensities
and without additional labels, the proposed method reduces the supervision
required for learning INRS from ultrasound scans by 90%.

– We tackle the problem of partial observations due to occlusions, by intro-
ducing an attenuation-compensated loss function. This enables optimization
directly from multiview annotations.

– By integrating acoustic features into the occupancy function, the proposed
method generalizes effectively, learning INRS across different volumes of the
same anatomical structure.

2 Method

2.1 Overview

Our objective is to reconstruct the surface of a medical shape from multiview
ultrasound scans. As shown in Fig. 2, the proposed method follows a three-step
approach. First, we optimize a neural field of tissue-specific acoustic properties
(attenuation, reflection, scattering). Second, we optimize an occupancy network
that maps these properties to occupancy. Finally, we sample the optimized oc-
cupancy network and apply Marching Cubes [9] algorithm to extract the 3D
mesh.

2.2 Neural Field of Acoustic Features

Our approach is based on the insight that the same tissue type exhibits consis-
tent acoustic features, therefore if one knows distribution of these features for a
specific tissue it can be used to localize this tissue in space. In B-mode images,
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Fig. 2. Overview of the proposed three-step approach for medical shape representa-
tion and surface reconstruction from multiview ultrasound scans. First, a neural field
of tissue-specific acoustic properties θ—attenuation (α), reflection (β), and scattering
(ϕ)—is optimized. Second, an UltrON is optimized to map these properties to occu-
pancy (o(θ)). Finally, the optimized occupancy network is sampled, and the Marching
Cubes [3] algorithm is applied to extract the 3D mesh. Ultra-NeRF is optimized us-
ing the full 3D volume as supervision, whereas UltrON is optimized using sparse 2D
ultrasound annotations converted to occupancy.

we observe only pixel intensities as effects of acoustic features, not the features
themselves. To learn these features from multiview B-mode scans we employ
Ultra-NeRF. Ultra-NeRF is a neural rendering framework that allows synthesis
of B-mode images from unobserved viewing points. Additionally it provides a
distribution of the three acoustic features—namely, attenuation (α), reflection
(β), and scattering (ϕ)-in space. However, the mapping between the distribu-
tion and the tissue type is unknown. To find this mapping we propose using an
occupancy-based method. Since these features are approximately homogeneous
within the same tissue type, we demonstrate that optimizing this mapping re-
quires fewer annotations compared to direct coordinate-to-occupancy mapping.

2.3 Ultrasound Occupancy Network

Occupancy function o of a 3D object is defined as a function that for every 3D
point x ∈ R3 maps this point to an occupancy value:

o : R3 → {0, 1} (1)

For a single 3D object, ON [10] is a neural implicit representation used to model
3D object by predicting the occupancy probability of points in continuous space.
Given a spatial coordinate x ∈ R3, an occupancy network approximates the
occupancy function:

fω : R3 → [0, 1] (2)

where fω(x) represents the probability that the point x is inside the object. In
this paper, we introduce UltrON, which extends the standard ON by integrating
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acoustic information into the representation. Specifically, instead of relying solely
on spatial coordinates, the ultrasound occupancy function ou is reformulated as

ou : Rd → {0, 1}, (3)

ou(θ(x)) =

{
1 if occupied
0 otherwise.

(4)

We approximate ou by the network fω and therefore fω(θ(x))) represents the
probability that the point x is inside the object given acoustic properties at
the point x and θ(x) ∈ Rd is the vector of acoustic properties at point x .
Since acoustic properties are largely homogeneous within a given tissue type
but vary across different tissues, incorporating this information provides a more
structured representation of anatomical regions.

2.4 Attenuation-compensated Optimization

Ultrasound is view-dependent, therefore during the training we account for
acoustic attenuation when comparing the network output with ground truth
labels, ensuring accurate tissue identification across different imaging angles. To
this end, we define the loss function based on the binary cross-entropy (BCE)
loss that considers effects of attenuation along the propagation path of the ultra-
sound beam. The rationale behind this is that some regions within the volume
of interest may or may not be observed depending on the probe’s position and
orientation since occlusions can prevent the signal from reaching certain points,
leading to incomplete or inaccurate observations. The resulting loss at a given
point x is computed as follows:

L(x) = − [y(x) · log(T (x) · fω(θ(x))) + (1− y(x)) · log(1− T (x) · fω(θ(x))]
(5)

where fω(θ(x)) is the occupancy function, y(x) is the ground truth label, and
T (x) is the transmittance function at point x. T (x) accounts for the transmission
of the acoustic signal based on the probe position and orientation. It reflects
occlusions and the visibility of the volume from the given probe viewpoint and
is defined as:

T (x) = T (0) · exp−
∫ x−ϵ
0

β(n)dn · exp−
∫ x−ϵ
0

α(n)dn (6)

To compute T (x) we use the ray casting and integrate attenuation α and re-
flection β along propagation path of the ultrasound beam from transducer to
the current position x within the volume. Similar integration of reflection and
attenuation has been proposed in [20], [16], [14].

3 Experiments and Results

3.1 Data

Four CAD vertebra models of lumbar spine vertebrae (L2, L3x2, L4), created
from the VerSe dataset [15], are used as phantoms for 3D printing. These models
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Fig. 3. Visualization of an example if reconstruction of L3 vertebra model from different
INRS optimized with dense (100%) and weak supervision (10%). We observe that
UltrON optimized on 10% of manual annotations preserves topology more accurately
than RoCoSDF and ON optimized on 100% annotations. This shows that UltrON
compensates errors in annotations naturally occurring due to tracking errors, occlusions
and human errors. Comparison between UltrON with (upper) and UltrON without
(bottom) the attenuation-compensated loss shows that the loss compensates acoustic
shadows in multiview ultrasound of a highly reflective structure.

are then used to create ballistic gelatin-based phantoms with paper pulp that
mimic soft tissue [6], offering better realism compared to models in a water bath.
Similar to RoCoSDF, we performed multiview scanning that includes row and
column scans, and in addition tilted scans as well. multiview scanning integrates
multiple viewpoints as illustrated in Fig 1(a). The tilted scans involve adjusting
the probe by -10 and +10 degrees from the standard row scan position. For
acquisition, we use a probe mounted on a robotic arm. The robotic tracking
system is calibrated to account for the offset caused by the probe’s attachment
to the arm. After data acquisition, the B-mode images are manually segmented.
This segmentation is then converted to occupancy data, where 0 is background
label and 1 is bone label. Using the poses corresponding to the B-mode images,
we compute the voxel positions in space and normalize them to fit within a unit
cube. For training RoCoSDF, we follow the procedure outlined in [3] to generate
the point clouds. For Ultra-NeRF, we utilize the poses and B-mode images as
described in [16].

3.2 Implementation Details

fω, the occupancy function in UltrON, and Ultra-NeRF, use the same architec-
ture which consists of 8 fully-connected layers with 128 hidden channels and with
the skip connection at the fourth layer. We use ReLU activation layers except
for the last layer. We follow 2-stage optimization. In the first stage, we optimize
Ultra-NeRF for 75k iterations, then we optimize UltrON for 50k iterations. We
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Table 1. Comparison of the shape reconstruction based on different representations
optimized with dense (100%) and weak supervision (10%) as measured by Chamfer
Distance (CD), Hausdorff Distance (HD), Mean Absolute Deviation (MAD), and Root
Mean Square Error (RMSE). We observe that UltrON with 10% annotations outper-
forms RoCoSDF trained on the whole available data by a margin of 26% as measured
by CD.

Method (supervision) CD (mm)↓ HD (mm)↓ MAD (mm)↓ RMSE (mm)↓

RoCoSDF [3](100%) 2.98 ± 0.03 9.79 ± 0.02 2.53 ± 0.02 3.67 ± 0.03

ON (100%) 2.91 ± 0.03 9.23 ± 0.02 2.60 ± 0.03 3.70 ± 0.03

UltrON w/o Loss (10%) 3.25 ± 0.12 9.30 ± 0.06 2.82 ± 0.12 3.98 ± 0.15
UltrON (10%) 2.22 ± 0.02 7.98 ± 0.04 1.67 ± 0.02 2.69 ± 0.03
UltrON (5%) 2.36 ± 0.03 8.04 ± 0.05 1.85 ± 0.03 2.88 ± 0.03

use the Adam optimizer with 0.0001 learning rate and exponential decay. For
training Ultra-NeRF we use regularized version of the method [20] and default
settings. We apply positional encoding method presented in NeRF [12] to the
input of the network. Our network is implemented using Pytorch and trained
on NVIDIA RTX 3090 GPU with 24 GB memory. Smoothing is applied to the
occupancy, and after smoothing the threshold for Marching Cubes is set to 0 to
extract the zero-level-set of the surface. For the smoothing and Marching Cubes
we use PyMCubes4 implementation. For ON, we use the same architectur as fω
but we change the network input to coordinates.

3.3 Evaluation Method

We compare the method to RoCoSDF, the state-of-the-art method in INRS for
ultrasound imaging, and coordinate-based ON. Four evaluation metrics are used
to assess reconstruction quality: Chamfer Distance (CD), Hausdorff Distance
(HD), Mean Absolute Distance (MAD), and Root Mean Square Error (RMSE).
These metrics are computed by calculating the distances between points ran-
domly sampled from the reconstructed mesh and the corresponding CAD mod-
els. To further asses the reconstructed volumes we compare the reconstructed
surfaces visually with respect to CAD models.

3.4 Qualitative and Quantitative Results

As shown in Table 1, UltrON improves surface reconstruction by 26% (CD)
over RoCoSDF and coordinate-based ON and requires 90% less annotations
to achieve this performance. Quantitative results in Fig. 3 show that UltrON
better preserves topology even in sparse data regimes since it is using dense
information about distribution of the acoustic features within the volume. We
4 https://github.com/pmneila/PyMCubes
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Fig. 4. Visualization of the reconstructed vertebra shapes with UltrON and RoCoSDF
in the presence of larger annotation errors and visualization of generalization to the
new shape (trained on L3 and fine-tuned on L2).

observe that UltrON is moreover more robust to errors in input data resulting
from annotation errors and in the misalignment of the input data. We observe
that with these errors RoCoSDF fails to preserve surface topology whereas using
acoustic features directly helps UltrON to correct these errors. We show an
example qualitatively in Fig 4.

Loss Ablation To visualize the importance of the attenuation compensation
we perform ablation on the loss. In Table 1 and Fig 3 we show that using a
standard BCE loss decreases performance of the method since the optimization
does not compensate the occlusions resulting from attenuation. This, as we can
see in the Fig 3 results in errors in the topology due to occlusions.

Table 2. Performance on generalization to a new shape of the same anatomy based on
Chamfer Distance (CD), Hausdorff Distance (HD), Mean Absolute Deviation (MAD),
and Root Mean Square Error (RMSE).

Supervison % + # iter. CD (mm)↓ HD (mm)↓ MAD (mm)↓ RMSE (mm)↓

w/o fine-tunning 3.44 ± 0.02 13.23 ± 0.07 1.79 ± 0.02 2.67 ± 0.03
1% + 100 iter 2.44 ± 0.02 7.91 ± 0.04 2.00 ± 0.02 2.94 ± 0.03

Shape Generalization To test the generalization, we need to account for real-
world variations, as well as variations resulting from the ill-posed nature of opti-
mizing a neural field. To this end, fine-tuning the network to a new shape of the
same anatomical structure is necessary. In this process, the last two layers of the
network are frozen, and only 1% of the labels are used. The fine-tuning procedure
takes approximately 5 seconds to complete (100 iterations). In Table 2 we show
that the reconstruction quality as measured by the four reconstruction metrics
is comparable to the full training. Fig 4 presents this observation quantitatively.
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4 Conclusion

We present UltrON, a novel approach that integrates acoustic features from B-
mode intensities into a representation of occupancy. We show that with 90%
fewer annotations, UltrON provides a representation that can enhance recon-
struction accuracy by 26%. Moreover, we introduce an attenuation compensated
loss function that facilitates optimization directly from multiview annotations
and tackles the problem of partial observations due to occlusions in multiview
ultrasound. Finally, we demonstrate that incorporating acoustic features into
the occupancy function enables generalization to the same anatomy across dif-
ferent volumes with 1% of the supervision and only requires 100 iterations of
fine-tuning. To further enhance the generalization of UltrON, one could consider
incorporating shape priors into the representation [1], [2]. We also believe that
explicitly defining unmeasured regions and incorporating uncertainty quantifi-
cation can enhance reconstruction quality, as demonstrated through visibility
analysis [17]. With these improvements, UltrON has the potential to facilitate
the creation of realistic, patient-specific 3D anatomical models that could be
utilized by both clinical practitioners and automated systems such as robotic
ultrasound [7].
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