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Abstract. Self-Supervised Learning (SSL) has shown promising results
in medical image segmentation, offering advanced performance with min-
imal annotations. However, the absence of semantics during pre-training
limits the performance of downstream tasks (e.g., organ segmentation).
To address this issue, we propose a novel SSL framework via Foundation
model Distillation and Anatomic Structure-aware multi-task learning
(FDAS) for medical image segmentation. Specifically, we distill knowl-
edge from the Segment Anything Model (SAM) and propose SAM-guided
anatomic Structure-aware Masked Image Modeling (S2MIM), which ran-
domly masks multiple anatomic structures in the image to enrich repre-
sentation learning. For better pre-training, we introduce anatomic struct-
ure-aware multi-task learning, which integrates reconstruction and seg-
mentation of anatomic structure-fused images to capture richer semantic
information, along with fusion-based contrastive learning to preserve the
semantic integrity and discriminative power of the learned representa-
tions. Experiments on two applications (cardiac MRI segmentation and
fetal brain MRI segmentation) demonstrate that our method effectively
improved the representation learning and outperformed several state-of-
the-art SSL methods. The code is available at https://github.com/HiLab-
git/FDAS.

Keywords: Self-Supervised Learning · Foundation Model · Image Seg-
mentation.

1 Introduction

Deep learning has significantly advanced medical image segmentation, playing a
vital role in computer-aided diagnosis [1, 16, 18, 23]. However, this success relies
heavily on large amounts of expensive annotations for training [5,15,24].

https://github.com/HiLab-git/FDAS
https://github.com/HiLab-git/FDAS
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Recent researches indicate that Self-Supervised Learning (SSL) is a promising
paradigm for its superiority in learning representations without relying on large-
scale annotations [3,6,13,20,25]. Contrastive Learning (CL) has been widely used
in SSL [6, 7, 19]. SimCLR [6] learns representations by using contrastive loss to
maximize agreement between augmented views of the same image while pushing
apart views of different images. MoCo [7, 10] builds a dynamic dictionary with
a queue and a momentum encoder, enabling consistent contrastive learning for
SSL. VoCo [19] is a volume contrast framework that utilizes contextual position
priors to learn consistent semantic representations for pre-training. Masked Im-
age Modeling (MIM) is also a typical pretext task in SSL [4, 9, 21, 22]. MAE [9]
and SimMIM [21] learn representations by masking parts of input images and
reconstructing the missing pixels. SurgNet [4] introduces local semantic consis-
tency to generate pseudo-masks and perform guided MIM, enhancing feature
learning for pre-training. HybridMIM [22] proposes a two-level masking hierar-
chy for masked image modeling, facilitating semantic learning at multiple levels.

However, these methods often overlook target structure semantics during pre-
training. For example, CL methods rely on simple augmentations like rotation,
scaling, or global-local comparisons. MIM methods reconstruct masked regions
using pre-defined shapes, which lack semantic relevance to the target, limiting
SSL performance. Recently, the Segment Anything Model (SAM) [11] has been
proposed as a foundation model for natural image segmentation, achieving im-
pressive zero-shot segmentation ability. Can we leverage foundation model (e.g.,
SAM [11]) to further strengthen the representation learning for SSL?

Along this direction, we propose a novel SSL framework via Foundation
model Distillation and Anatomic Structure-aware multi-task learning (FDAS)
to further enhance representation learning for medical image segmentation. Our
contributions are summarized as follows: (1) We propose SAM-guided anatomic
Structure-aware Masked Image Modeling (S2MIM), which distills SAM semantic
segmentation knowledge and leverages its zero-shot segmentation to randomly
mask multiple anatomic structures in the input image, enhancing MIM with
enriched target semantics. (2) Based on S2MIM, we introduce Image Fusion-
driven Reconstruction (IFR) to reconstruct fused images and SAM Knowledge
Distillation (SKD) to segment anatomic targets, which can capture richer se-
mantics for representation learning in pre-training. (3) We also propose the
Fusion-based Contrastive Learning (FCL) strategy to maximize agreement be-
tween anatomic structure-fused images and the corresponding original images
while pushing apart views of different images, which reserves the semantic in-
tegrity and the discriminativeness of the learned representations. This strategy
can effectively improve the capabilities of learning anatomic structural-semantic.

Extensive experiments on two applications (cardiac MRI segmentation and
fetal brain MRI segmentation) showed that our method can effectively improve
the representation learning in SSL. It outperformed several state-of-the-art SSL
methods for medical image segmentation.
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Fig. 1. Overview of our FDAS. We use SAM-guided anatomic Structure-aware Masked
Image Modeling (S2MIM) to generate masked image xm through randomly anatomic
structural masking in the input x. The fused image x′

m can be used for anatomic
structure-aware multi-task learning, which includes reconstruction loss LIFR, segmen-
tation loss LSKD and contrastive loss LFCL.

2 Method

Fig. 1 shows the overview of our FDAS. We distill SAM knowledge to guide
anatomic structure-aware masked image modeling, which randomly masks mul-
tiple anatomic structures in the input image. Through image fusion-driven recon-
struction and segmentation, the fused images are reconstructed and segmented
to enhance anatomic semantics in representation learning. Fusion-based con-
trastive learning aligns fused images with their original images while separating
different images.

2.1 SAM-guided anatomic Structure-aware Masked Image
Modeling

Existing SSL methods based on MIM demonstrate limited performance due
to the lack of target semantics in the masking process. Considering this is-
sue, we propose SAM-guided anatomic Structure-aware Masked Image Model-
ing (S2MIM) to achieve better representation learning. It distills the knowledge
from the powerful SAM [11] and provides valuable anatomic semantics for a
lightweight model (e.g., UNet [12]).

Specifically, for an input image x ∈ RH×W , where H and W are the height
and width, respectively. We use SAM’s automatic mask generator to produce
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masks m ∈ {0, 1}M×H×W for x, with each sub-mask denoted as mi ∈ {0, 1}H×W

(i = 1, 2, . . . ,M), where M denotes the total number of sub-masks. To enhance
the consistency of m and reduce noise, we apply a preprocessing step. Motivated
by the 95% variance contribution principle from Principal Component Analy-
sis (PCA) [8], we first sort the sub-masks mi by area and then determine the
minimal number k required to cover at least 95% of the total area, in order to
mitigate the influence of small noisy areas in m. We average k across all im-
ages and rounding up before taking the nearest integer to obtain K of principal
representation sub-masks, which is formally defined as:

K =

⌈
1

N

N∑
n=1

(
min
k

(∑k
i=1

∑H×W
p=1 m∗p

i,n∑M
i=1

∑H×W
p=1 m∗p

i,n

≥ α
))⌉

, (1)

where N is the number of pre-training images, m∗
i is the sorted sub-masks,

α = 95% and ⌈·⌉ denotes rounding up to the nearest integer. We remain the top
K largest sub-masks in each m that are referred to as anchor sub-masks. The
remaining sub-masks in m are assigned to the nearest anchor sub-mask based on
their Euclidean distance. As a result, we obtain a new mask m′ ∈ {0, 1}K×H×W .
If M < K, the extra (K −M) channels are padded with zeros.

We randomly select r ∈ (0, 1) of the sub-masks in m′ and mask them to
obtain the anatomic structure mask map m′

s. Formally, we define m′
s as:

m′
s = m′ ⊙M, (2)

where ⊙ denotes element-wise multiplication at the pixel level. M ∈ {0, 1}K is a
selection mask, with r of sub-masks in m′ randomly set to 0, and the remaining
sub-masks are set to 1.

Then, we obtain the anatomic structure-masked image xm by applying m′
s

to the original image x. This is formally defined as:

xm = x⊙
( K∑
k=1

m′
s
k)
. (3)

2.2 Image Fusion-driven Reconstruction

The quality of feature representations learned during the pre-training phase is
essential for SSL. To improve this, we propose multi-task learning that integrates
three complementary tasks: Image Fusion-driven Reconstruction (IFR), SAM
Knowledge Distillation (SKD) for segmentation, and Fusion-based Contrastive
Learning (FCL). We employ a general encoder (fΘe

), a general decoder (fΘd
), a

lightweight reconstruction head (fΘr ) and a simple segmentation head (fΘs) to
achieve multi-task learning in SSL.

Specifically, for IFR, we build upon our S2MIM and propose an image fusion-
driven reconstruction to recover the anatomic structural semantics of different
images, which reduces the variance of the masked image xm and enhances the
robustness of the reconstruction process. Let xj be an auxiliary image randomly
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sampled from other images within the same batch as xm. For image fusion, we
use xj to fill the masked regions in xm. For each pixel location p, the anatomic
structure-fused image x′

m(p) is defined as follows:

x′
m(p) =

{
xj(p), if xm(p) = 0,

xm(p), otherwise.
(4)

The reconstruction output yr of x′
m is obtained by:

yr = f
(
x′
m; Θe,Θd,Θr

)
. (5)

Formally, the image fusion-driven reconstruction loss is given by:

LIFR =
1

H ×W

H×W∑
p=1

(
yr(p)− x(p)

)2
. (6)

2.3 SAM Knowledge Distillation for Segmentation

To capture richer anatomic structural information in SSL, we introduce SAM
Knowledge Distillation (SKD) for segmentation, which distills the powerful prior
knowledge of SAM and leverages its superiority in zero-shot segmentation to
guide the learning process. For a given anatomic structure-fused input image
x′
m, the segmentation output is defined as:

ys = f
(
x′
m; Θe,Θd,Θs

)
. (7)

We use m′
s as the label to supervise ys and employ the Dice loss for supervision,

which is defined as:

LSKD = 1− 1

K

K∑
k=1

∑H×W
p=1 2 ·

(
yks (p)) · (m′

s
k
(p)

)∑H×W
p=1

(
yks (p) +m′

s
k(p)

)
+ ϵ

, (8)

where each of K one-hot regions is taken as a foreground class, sorted by region
size, and ϵ = 10−7 is a small number for numerical stability.

2.4 Fusion-based Contrastive Learning

To preserve the semantic integrity and the global feature representation ability,
we propose Fusion-based Contrastive Learning (FCL) for better pre-training.

Let the batch size be B, with a batch of original images X = {xb}Bb=1 and
their corresponding fused images X ′ = {x′

m,b}Bb=1. For each sample x′
m,b and xb,

the feature embeddings obtained by fΘe are denoted as F ′
b and Fb, respectively.

For each sample b in the batch, the positive pair is (F ′
b,Fb), and the negative

pairs are (F ′
b,Fg) for all g ̸= b. Then, the Fusion-based Contrastive Loss based

on the InfoNCE [10] loss is formulated as:

LFCL = − 1

B

B∑
b=1

log
exp

(
sim(F ′

b,Fb)/τ
)

exp
(
sim(F ′

b,Fb)/τ
)
+

∑B
g=1,g ̸=b exp

(
sim(F ′

b,Fg)/τ
) ,
(9)
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where sim(·, ·) denotes the cosine similarity function, and τ is the temperature
coefficient, which is set to 0.1. The overall loss of our FDAS for pre-training is:

L = LIFR + LSKD + λLFCL, (10)

where λ is the balancing hyper-parameter.

3 Experiment

3.1 Experimental Details

Dataset and Metrics Our experiments used the public Multi-Centre, Multi-
Vendor, and Multi-Disease Cardiac Image Segmentation dataset (M&MS [2])
and a private Fetal Brain (FB) dataset [17]. The target tissues of the M&MS
dataset are the Left Ventricle (LV), Myocardium (MYO), and Right Ventricle
(RV). For the FB dataset, the target tissue is the fetal brain. The M&MS dataset
contains 694 MRI volumes and the FB dataset includes 112 volumes. We ran-
domly divided the datasets into 70% for training, 10% for validation, and 20%
for testing, discarding the annotations of the training set during pre-training.
For downstream tasks, we randomly select a small portion of images with anno-
tations from the training set. The performance was quantitatively measured by
Dice score and Average Symmetric Surface Distance (ASSD) in 3D space.

Implementation Details Our FDAS followed the two-step SSL paradigm, i.e.,
self-supervised representation learning and fully-supervised downstream fine-
tuning. We adopted classic 2D UNet [12] to demonstrate the effectiveness of
our method. The image intensity was linearly normalized to [-1, 1] and each slice
was resized to 256×256. During pre-training, the M&MS dataset was trained for
30k iterations and the FB dataset was trained for 60k iterations. We adopted
the Adam optimizer with a momentum of 0.9 and an initial learning rate of
10−3. All parameters Θ were optimized jointly. The hyper-parameters r and λ
were optimized using the validation set, and all ablation studies were conducted
with 10% of the training data for fine-tuning. Specifically, we selected r = 70%
and λ = 0.5 for both datasets. All experiments were implemented with PyTorch,
using an NVIDIA GeForce RTX 3090 GPU. The pre-trained model is deployed
on the SenseCare platform [14] for clinical research.

3.2 Results

Comparison with Other Methods Our FDAS was compared with five state-
of-the-art SSL methods: 1) MoCo [10] that uses momentum contrastive learning
for self-supervised learning. 2) SimCLR [6] that leverages contrastive learning
based on data augmentation. 3) MAE [9] that employs masked image model-
ing for SSL. 4) HybridMIM [22] that employs two level masking for masked
image modeling. 5) VoCo [19] that utilizes contextual position priors to cap-
ture consistent semantic representations. We also compared our method with:
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Table 1. Quantitative comparison of different methods using 10% data for fine-tuning
(excluding “Upper Bound”) on both datasets. † indicates a significant improvement
(p-value ≤ 0.05 in paired t-test) from the best values obtained by existing methods.

Method Dice ↑ (%) ASSD ↓ (pixel)
M&MS(LV) M&MS(MYO) M&MS(RV) FB M&MS(Avg) FB

From Scratch 76.54±20.12 64.83±18.94 71.39±22.60 74.11±12.23 1.56±2.62 4.19±4.65
SAM-FT [11] 74.50±12.90 65.50±10.89 83.04±7.42 80.57±8.79 1.03±0.56 2.20±2.46
MoCo [10] 82.39±14.93 73.41±13.65 79.80±15.68 82.74±11.48 0.97±1.32 2.92±5.11
SimCLR [6] 83.05±15.38 74.38±12.93 77.86±17.11 81.43±9.55 1.17±1.51 3.12±4.67

MAE [9] 85.01±11.57 74.33±12.39 81.05±17.04 89.94±6.54 0.68±0.67 1.08±0.89
HybridMIM [22] 84.95±11.73 75.85±10.38 77.44±14.29 84.80±12.42 1.10±2.02 4.13±10.15

VoCo [19] 86.28±4.64 75.63±4.85 79.64±5.48 84.38±5.59 0.76±0.27 1.65±1.07
Ours 89.62±6.66† 80.16±9.51† 84.83±10.67† 92.55±4.14† 0.58±0.69† 0.86±1.11

Upper Bound 89.47±6.85 80.53±8.31 85.76±11.37 94.85±2.25 0.44±0.34 0.89±1.90

Image                                                                        Ground truth SAM-FT[11] MoCo[10] SimCLR[6] MAE[9] HybridMIM[22] VoCo[19] Ours

Left Ventricle (LV) Right Ventricle (RV) Myocardium (MYO) Fetal Brain 

Fig. 2. Qualitative segmentation results of different methods. The first two rows and
the last two rows are from the M&MS and FB datasets, respectively.

1) From Scratch that trains a randomly initialized network using 10% data
for fully supervised learning. 2) SAM-FT [11] that uses annotated images to
fine-tune SAM. 3) Upper Bound that uses 100% of the data to train the model.
The results of downstream experiments on both datasets are shown in Table 1
and Fig. 3(a). Except for “Upper Bound”, all of the methods use 10% of the
data for fine-tuning. The existing methods only achieved moderate improve-
ments compared to “From Scratch”. In contrast, our method achieved significant
improvements, outperforming most SSL methods in terms of Dice and ASSD.
For example, compared to “From Scratch” in M&MS(LV) and FB segmentation,
our method achieved average Dice scores of 89.62% and 92.55%, reflecting im-
provements of 13.08 and 18.44 percentage points, respectively. Fig. 3(a) shows
the average Dice across LV, MYO, and RV on the M&MS dataset, our method
outperformed existing methods across different data ratios, with the 20% data
ratio result (85.97%) even surpassing “Upper Bound (85.25%)”. Fig. 2 shows a
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Table 2. Effectiveness of components in our FDAS. Baseline trains the model from
scratch. S2MIM: Using SAM-guided anatomic structure-aware MIM for SSL. LIFR and
LSKD: Introducing reconstruction loss and segmentation loss for pre-training, respec-
tively. LFCL: Using fusion-based contrastive loss for representation learning.

S2MIM LIFR LSKD LFCL
Dice ↑ (%) ASSD ↓ (pixel)

LV MYO RV Average Average
baseline 76.54±20.12 64.83±18.94 71.39±22.60 70.92±20.55 1.56±2.62

✓ 84.54±15.04 75.30±12.08 73.05±24.39 77.63±17.17 1.08±1.97
✓ ✓ 85.27±13.58 75.04±11.80 77.06±20.04 79.13±15.14 1.04±1.67
✓ ✓ ✓ 86.53±12.08 78.00±12.20 80.73±15.65 81.75±13.31 0.65±1.08
✓ ✓ ✓ ✓ 89.58±7.94 79.64±8.40 82.61±14.40 83.94±10.25 0.66±0.93
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Fig. 3. (a) shows the average Dice scores across all target tissues on the M&MS dataset
with varying data ratios. (b) and (c) show the effect of different mask ratios r and
weights λ on the validation set of both datasets, respectively.

visual comparison between different SSL methods fine-tuned with 10% of the
data. It can be observed that our segmentation results were closer to the ground
truth and more complete.

Ablation Study There are two key hyper-parameters specific to our method:
the mask ratio r and loss weight λ. We first investigated the effect of different r
and the performance is shown in Fig. 3(b). We can observe that r = 70% achieved
the best performance. Fig. 3(c) shows the performance with different λ values
and the best λ was 0.5. To evaluate the effectiveness of components in our FDAS,
we further investigated the impact of S2MIM, LIFR, LSKD, and LFCL on the
M&MS dataset. As shown in Table 2, each component of our method contributed
to a performance improvement. The baseline achieved an average Dice of 70.92%.
Only using S2MIM for SSL obtained the Dice of 77.63%, and additionally using
LIFR and LSKD improved it to 79.13% and 81.75%, respectively. Our proposed
method combining all these components achieved the highest Dice of 83.94%.

4 Conclusion

In this paper, we propose a novel SSL framework, FDAS, which leverages foun-
dation model distillation and anatomic structure-aware multi-task learning to
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overcome the limitations of existing methods in medical image segmentation. We
propose SAM-guided anatomic structure-aware masked image modeling to distill
SAM knowledge and randomly mask multiple structures in the image to enhance
anatomic semantics. Our method leverages anatomic structure-aware multi-task
learning for better pre-training, integrating reconstruction and segmentation of
fused images alongside fusion-based contrastive learning. Experiments on the
public M&MS dataset and a private fetal brain dataset demonstrate the ef-
fectiveness of our method, achieving superior performance compared to several
state-of-the-art SSL methods. In the future, it is of interest to apply our method
to other downstream tasks.
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