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Abstract. Tissue microstructure information reconstructed from dif-
fusion magnetic resonance imaging (MRI) provides crucial brain tissue
information for brain disease analysis. However, clinical imaging time
constraints often limit the availability of diffusion MRI, thus prompt-
ing research into tissue microstructure reconstruction from clinically fea-
sible MRI modalities, such as T1-weighted MRI. Recent Transformer-
based generative adversarial networks demonstrate potential by captur-
ing long-range dependencies via self-attention in general MRI synthesis
tasks, yet the significant gap between diffusion and T1-weighted MRI
limits their ability to achieve optimal performance, leading to anatom-
ical inconsistency in the reconstructed tissue microstructure maps. To
address the problem, we propose a hierarchical anatomy-aware guid-
ance (HAAG) framework for brain tissue microstructure reconstruction
from T1-weighted MRI. First, we consider a two-level strategy to intro-
duce the anatomical priors for the Transformer. At the input level of the
Transformer, we propose an adaptive semantic embedding module that
seamlessly integrates anatomical structure category information, provid-
ing semantic-level guidance for tissue microstructure reconstruction. At
the feature modeling level of the Transformer, we propose a distance-
guided self-attention mechanism to achieve effective information fusion
of anatomical structures that balances both global and local contexts.
Then, we consider a more general approach to verify the anatomical con-
sistency at the output level of the whole synthesis network. We develop
an anatomy-aware discriminative loss that encourages anatomical con-
sistency between the input and output modalities. HAAG was validated
on a public brain MRI dataset for reconstruction of tissue microstruc-
ture from T1-weighted MRI. The results demonstrate that our method
significantly improves the quality of tissue microstructure reconstruction.
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1 Introduction

Tissue microstructure information reconstructed from diffusion magnetic res-
onance imaging (MRI) has demonstrated great value into human brain re-
searches [10]. However, the demand for long scanning times makes the acqui-
sition of diffusion MRI impractical in clinical settings, thereby impeding the use
of tissue microstructure information for clinical use. To address the problem, it
is possible to apply generic MRI synthesis approaches so that tissue microstruc-
ture reconstruction is achieved via synthesis from clinically feasible MRI modal-
ities, such as T1-weighted MRI. For example, earlier MRI synthesis works use
registration-based strategies [15], compressed sensing [18], and random forest re-
gression [9]. More Recent methods use deep learning techniques, mostly with
generators and discriminators trained by adversarial learning [6,7,27]. These
methods are based on convolutional neural networks (CNNs) [5,12,13,1,23,14]
or Transformer-based generators [4,22]. Additionally, diffusion models [16,8,17]
have been developed for better MRI synthesis performance, but they usually
require considerable computational resources.

Among the DL models, the Transformer-based generative adversarial net-
work (GAN) is more practical in resource-limited clinical scenarios with mod-
erate computational efficiency. Thus, we focus on the use of Transformer-based
MRI synthesis networks for brain tissue microstructure reconstruction from clin-
ically feasible MRI. However, direct application of existing Transformer-based
models for tissue microstructure reconstruction only leads to suboptimal perfor-
mance due to the insensitivity of clinically feasible MRI to tissue microstructure,
which greatly increases the synthesis difficulty and leads to anatomical inconsis-
tency in the synthesized result. Thus, improvement of Transformer-based meth-
ods is still required for brain tissue microstructure reconstruction.

In this study, we introduce a Hierarchical Anatomy-Aware Guidance (HAAG)
framework into Transformer-based brain MRI synthesis models for tissue mi-
crostructure reconstruction from clinically feasible MRI. HAAG uses anatomical
prior knowledge, which has been neglected by previous synthesis methods, to
guide the synthesis model at different levels. First, to improve the Transformer
framework, a two-level approach is suggested for integrating the anatomical
prior knowledge. At the input level, an adaptive semantic embedding module
is proposed to integrate anatomical structure category information for semantic
guidance. At the feature modeling level, a distance-guided self-attention mech-
anism is proposed to balance global and local contexts and blend information
across anatomical structures. Second, to obtain a more general way to maintain
anatomical consistency during network training, at the output level of the whole
generator, an anatomy-aware discriminative loss is used to enforce anatomi-
cal agreement between input and output images, which encourages structural
precision of the reconstruction results. For validation we applied the proposed
methods to synthesize the NODDI [25] tissue microstructure maps, including the
Intra-Cellular Volume Fraction (ICVF) and Orientation Dispersion (OD) maps,
from T1-weighted MRI with the public Human Connectome Project (HCP) [20]
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dataset. The results show that HAAG improves the quality of tissue microstruc-
ture reconstruction compared with other approaches.

2 Methods

2.1 Problem Formulation

Given a clinically feasible brain MRI modality, we aim to synthesize brain tissue
microstructure maps from it. We assume that a training dataset of source MRI
scans Xs (i.e., clinically feasible MRI) and the corresponding target tissue mi-
crostructure maps Xt from the same subjects are available. A synthesis model is
trained on this paired data to learn the mapping from source to target images.

2.2 HAAG: Hierarchical Anatomy-Aware Guidance

We assume that the incorporation of prior knowledge about brain anatomy can
aid tissue microstructure synthesis from the source MRI modality. To this end, we
propose the HAAG framework. It combines two methods to integrate anatomical
prior knowledge. First, we introduce the design of learnable semantic embedding
with anatomical category information for the input of self-attention. Then, we
explain how relative distance prior knowledge benefits self-attention. Second, we
introduce a broader strategy for consistency-aligned feature generation and then
present the overall brain MRI synthesis model with HAAG.

Adaptive Semantic Embedding, ASE In the original patch embedding, the
input image feature x ∈ RH×W×Dtoken was reshaped into a flattened 2D sequence
of patches xp ∈ RN×(P 2·C), where H, W , C, N and Dtoken are respectively
the height, the width, the feature channel of input, the number of patches and
the embedding dimension of the Transformer tokens, P 2 is the patch size, and
N = HW/P 2.

In the proposed Adaptive Semantic Embedding (ASE) module, the anatomi-
cal sequence for each patch which is denoted by Cp ∈ {1, 2, . . . ,K}P 2·C with K
as the number of anatomical categories, is firstly mapped to an embedding space
using a learnable embedding matrix E ∈ RK×Demb with embedding dimension
Demb:

Emp = E[Cp] ∈ RN×(P 2·Demb). (1)
Then, the embedding matrix Emp is projected to the same feature space of

the image feature tokens using a learnable linear transformation matrix Ws ∈
R(P 2·Demb)×Dtoken to gather patch’s semantic information from spatial perspec-
tive:

ASEp = Emp ·Ws ∈ RN×Dtoken . (2)
Finally, the adaptive semantic embedding ASEp, image feature embedding Xp,

and positional embedding PEp are fused as follows:

X
′

p = Xp +ASEp +PEp. (3)
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Fig. 1. A schematic of the generator of the brain MRI synthesis model for tissue
microstructure reconstruction with Hierarchical Anatomy-Aware Guidance framework.

Note that to prevent overfitting, dropout is applied to the fused embedding X
′

p

with a dropout probability γ = 0.1.

Relative Distance-Guided Self-Attention, RDG-SA Suppose N image
tokens are sent into the self-attention module, and the i-th token is denoted by
a row vector X

′

i ∈ RDtoken . For each token X
′

i , the spatial position (xi, yi) can
be obtained by:

xi =

⌊
i− 1

NW

⌋
, yi = (i− 1) mod NW , (4)

where i ∈ {1, 2, . . . , N} and NW = W
P .

Given the spatial position, we have the horizontal and vertical relative dis-
tances for each pair of tokens X

′

i and X
′

j as:

∆xij = |xi − xj |, ∆yij = |yi − yj |. (5)

Thus, the total relative distance ∆ij is defined as the sum of the horizontal
and vertical distances:

∆ij = ∆xij +∆yij . (6)
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Then, the relative distance is obtained by being normalized with the maxi-
mum possible distance ∆max = NH +NW , where NH = H

P :

∆̂ij =
∆ij

∆max
. (7)

With the spatial position prior knowledge about brain anatomy, it is possi-
ble to construct a relative distance-guided relation matrix R ∈ RN×N for the
input tokens, where the (i, j)-th entry Ri,j of R roots from the complement of
normalized relative distance ∆̂ij , forecasting that higher Ri,j indicates that i-th
token and j-th token are more likely to inform each better:

R = Wr(1− ∆̂), (8)

where Wr ∈ RN×N is a learnable linear transformation matrix.
We propose to supplement the conventional self-attention with relation ma-

trix R and design the Relative Distance-Guided Self-Attention (RDG-SA) as:

RDG-SA(X
′
) = softmax

(
X

′
WQ(X

′
WK)

⊤
√
dk

+R

)
X

′
WV, (9)

where WQ, WK, and WV are three learnable projection matrices in the Trans-
former, and dk is the projected dimension. In this way, this enhanced atten-
tion mechanism prioritizes interactions between spatially proximate tokens, ef-
fectively modeling the local dependencies.

Multi-head self-attention plays a crucial role in the success of the Trans-
former [21]. RDG-SA can be extended to multi-head RDG-SA as well, which
allows diverse attention for richer representations.

Anatomical Consistency Generation, ACG In order to explicitly ensure
anatomical consistency between the synthesized and target images, we propose
an Anatomical Consistency Generation (ACG) method where a perceptual loss
is introduced.

First, a simple UNet-like perceptual network is constructed with 4 down-
sampling and 4 upsampling blocks to classify tissue types. Pretrained on gold
standard images, it uses the loss function:

Lpt = LBB_pt + Laux_gs, (10)

where LBB_pt is the backbone (BB)’s pretraining loss and Laux_gs is the cross-
entropy loss computed between the gold standard images’ classification result
and tissue-category labels.

During the fine-tuning phase, the perceptual network is frozen, and the syn-
thesized images are used as input to compute the tissue-type classification error
as the loss to back-propagate:

Lft = LBB_ft + Laux_syn, (11)

where LBB_ft is BB’s fine-tuning loss and Laux_syn is the cross-entropy loss
computed between the synthesized images’ classification result and the tissue-
category labels.
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Overall Synthesis Model Integrating ASE and RDG-SA forms the first com-
ponent of the HAAG framework, concentrating on enhancing the Transformer
by integrating anatomical priors. The second component of HAAG framework is
the ACG module, verifying the anatomical consistency of generator’s intermedi-
ate feature. The architectures of these three mechanisms are respectively shown
in Fig. 1.

2.3 Implementation Details

Our selected Transformer-based model ResViT [4] has achieved superior perfor-
mance in brain MRI synthesis. It has a generator and a discriminator, trained ad-
versarially. Unlike CNN-based models that capture only local contexts, ResViT
improves the generator’s bottleneck with a Transformer-based module using self-
attention for long-range dependencies.

The implementation of our method is based on the open-source code of
ResViT. The data preprocessing process includes: (1) computing tissue mi-
crostructure and brain parcellation maps respectively from diffusion MRI and
structural MRI, and (2) co-registering diffusion MRI and microstructure maps
with structural MRI. Like ResViT [4], the proposed method takes 2D MRI slices
as input, and the output slices are concatenated to form the 3D synthesis re-
sult. The training procedure also follows ResViT, which includes a pretraining
phase and a fine-tuning phase. For more details that are not related to the HAAG
framework, please refer to ResViT [4]. The codes for the proposed HAAG frame-
work are available at https://github.com/Winterborner/HAAG.

3 Experiments

Data Description and Experimental Settings. To evaluate our proposed
methods, we focused on synthesizing ICVF and OD maps from T1-weighted im-
ages. This is challenging because ICVF and OD, usually reconstructed from dif-
fusion MRI [25], capture tissue microstructure while T1-weighted images aren’t
sensitive to it. We chose T1-weighted images as the source modality as they’re
commonly available in MRI acquisitions.

Experiments were performed on the publicly available HCP dataset [20]. We
selected 61 subjects: 36 for training with 1 subject set aside for validation and
25 for testing. Each subject has a T1-weighted scan (0.7 mm isotropic voxel
size) and a diffusion MRI scan (270 diffusion gradients on three b-shells: b =
1000, 2000, 3000 s/mm2 and 1.25 mm isotropic voxel size).

ICVF and OD maps estimated from diffusion MRI scans using AMICO [3]
were used for training the model with training subjects and as the gold standard
for evaluation with test subjects. These maps were rigidly registered with T1-
weighted images using the registration tool in ANTs [2]. For anatomical prior
knowledge, we used FSL-FAST [26] to perform brain parcellation on T1-weighted
images. For clarity in the results, the first and second components of the HAAG
framework are denoted as ‘Ours1’ and ‘Ours2’ respectively.

https://github.com/Winterborner/HAAG
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Fig. 2. Representative results of ICVF and OD synthesis and their zoomed error maps
with gold standard shown for reference.

Evaluation of Synthesis Results We compared our approaches with three
advanced image synthesis methods: pGAN [5], the 3D version of Pix2Pix (de-
noted by ’Pix2Pix’) [19], and ResViT (denoted by ‘Baseline’) [4]. An example
of the synthesized result of the proposed methods is shown in Fig. 2, where the
gold standard is shown as well. Also, the zoomed error maps for the square re-
gions highlighted in the synthesis results are displayed. The zoomed error maps
of both proposed methods appear darker than those of competing methods,
which indicates better agreement of the proposed methods with the gold stan-
dard. Moreover, the synthesized results of both proposed methods contain more
accurate details than those of competing methods.

Quantitatively, we measured the mean absolute error (MAE), root mean
squared error (RMSE), and peak signal-to-noise ratio (PSNR) of the synthesis
results of the proposed and baseline methods, and presented results in Table 1.
Ours1 had the lowest MAE and RMSE, along with the highest PSNR, while
Ours2 was the second-best. These results show the superior synthesis quality
of both proposed methods. Additionally, for all cases, the difference between
the optimal method Ours1 and competing methods is statistically significant
(p < 0.001) with a large effect size (d > 0.8).

Ablation Experiments The ablation study delved deeper into how ASE and
RDG-SA affect the synthesis quality of Ours1, with results presented in Table 2.
Note that the baseline backbone for this ablation study is that of ’Baseline’
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Table 1. Means and standard deviations (stds) of the MAE, RMSE, and PSNR of
the synthesis results for the proposed and competing methods. The best results are
highlighted in bold. The proposed method with the best performance was compared
with all competing methods with paired Student’s t-tests (∗∗∗p < 0.001, ∗∗p < 0.01,
∗p < 0.05). The effect sizes (Cohen’s d) for the comparison are also shown.

MAE RMSE PSNR

Mean±Stdp
d Mean±Stdp

d Mean±Stdp
d

ICVF

pGAN (5.83± 0.29)×10−2∗∗∗
4.06 (8.53± 0.38)×10−2∗∗∗

4.50 21.39± 0.39∗∗∗4.24
Pix2Pix (5.03± 0.34)×10−2∗∗∗

1.75 (7.25± 0.40)×10−2∗∗∗
1.67 22.81± 0.47∗∗∗1.64

Baseline (5.02± 0.65)×10−2∗∗∗
1.18 (7.12± 0.60)×10−2∗∗∗

1.13 22.98± 0.73∗∗∗1.13
Ours2 (4.48± 0.31)×10−2∗∗

0.32 (6.62± 0.40)×10−2∗∗
0.29 23.60± 0.54∗∗0.30

Ours1 (4.36± 0.40)×10−2 (6.48± 0.50)×10−2 23.79± 0.68

OD

pGAN (9.86± 0.15)×10−2∗∗∗
16.91 (12.70± 0.18)×10−2∗∗∗

16.28 17.93± 0.13∗∗∗15.04
Pix2Pix (7.55± 0.16)×10−2∗∗∗

3.81 (9.66± 0.21)×10−2∗∗∗
2.78 20.31± 0.19∗∗∗2.78

Baseline (7.19± 0.17)×10−2∗∗∗
1.79 (9.45± 0.22)×10−2∗∗∗

1.87 20.50± 0.20∗∗∗1.87

Ours2 (7.07± 0.15)×10−2∗∗∗
1.22 (9.24± 0.20)×10−2∗∗∗

1.08 20.69± 0.19∗∗∗1.09

Ours1 (6.85± 0.19)×10−2 (8.98± 0.26)×10−2 20.93± 0.25

Table 2. Means and stds of the MAE, RMSE, and PSNR from ablation experiments.
The best results are highlighted in bold.

MAE RMSE PSNR

Mean±Std Mean±Std Mean±Std

ICVF
Ours1 (4.36± 0.40)× 10−2 (6.48± 0.50)× 10−2 23.79± 0.68
w/o RDG-SA (4.49± 0.34)× 10−2 (6.62± 0.41)× 10−2 23.60± 0.55
w/o ASE (4.55± 0.37)× 10−2 (6.77± 0.43)× 10−2 23.41± 0.55

OD
Ours1 (6.85± 0.19)× 10−2 (8.98± 0.26)× 10−2 20.93± 0.25
w/o RDG-SA (6.91± 0.14)× 10−2 (9.02± 0.18)× 10−2 20.89± 0.14
w/o ASE (7.07± 0.17)× 10−2 (9.25± 0.22)× 10−2 20.68± 0.21

in Table 1. ASE and RDG-SA were crucial in improving the precision of the
synthesized images, where the complete setup resulted in optimal performance
of Ours1.

4 Discussion and Conclusion

We have proposed the HAAG framework, two hierarchical anatomy-aware guid-
ance methods, for brain tissue microstructure reconstruction from clinically fea-
sible MRI. The HAAG framework, with its ASE-RDG-SA combination module
and ACG module, incorporates brain anatomy prior knowledge at the Trans-
former’s input and feature-modelling level, and the whole generator-output align-
ment level. This promotes anatomical consistency between source and target
images. Experiments performed on the public HCP dataset for ICVF and OD
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synthesis from T1-weighted images show that the HAAG framework improves
the synthesis quality.

While recent related works have made significant contributions to structural
preservation in image synthesis, notably mutual information loss for modality
alignment [11] and hierarchical granularity approaches [24], our work represents
the first framework leveraging structural MRI and anatomical priors specifically
for brain tissue microstructure reconstruction. A limitation of our work is the
restricted evaluation on pathological cases, which may affect model generaliz-
ability. In future work, we will validate the clinical utility of our method on
diverse patient cohorts.
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