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Abstract. Synthesizing multi-phase contrast-enhanced CT (CE-CT) im-
ages is clinically significant, as it can mitigate clinical risks such as radia-
tion exposure and allergic reactions to contrast agents. However, existing
methods treat multi-phase synthesis as separate tasks, failing to maintain
the inter-phase dependencies and consistency between synthesized multi-
phase CE-CT images. Moreover, the limited variability in CT intensity
distributions makes it challenging to capture subtle variations in multi-
phase imaging. For the first time, we propose a novel Causality-driven
Spatio-temporal Generator (CSGen) for synthesizing multi-phase CE-CT
imaging through three key novelties: 1) Using a novel phase-causality
to creatively exploit the multi-phase variation content for driving the
multi-phase CE-CT synthesizing, addressing the challenge of capturing
multi-phase discriminative features through one model. 2) Introducing a
new Spatio-temporal Transformer to establish the spatio-temporal cor-
relation between multi-phase CE-CT images for leveraging multi-phase
inter- and intra-dependencies and improving synthesis quality. 3) Multi-
phase adversarial learning is designed for enhancing multi-phase discrim-
inative feature learning. Experimental results (mean PSNR: 31.15, mean
SSIM: 0.9066, mean NMAE: 3.17) demonstrate that CSGen outperforms
state-of-the-art synthesis methods, and, for the first time, successfully
synthesizes multi-phase CE-CT images.

Keywords: Multi-phase CE-CT synthesis · Causality-driven · Spatio-
Temporal Transformer · Multi-phase adversarial learning.

1 Introduction

Multi-phase contrast-enhanced CT (CE-CT) imaging is essential for diagnos-
ing liver tumors [1,2]. However, in clinical practice, multi-phase CE-CT imaging
is performed by injecting chemical contrast agents (CAs), which introduces sev-
eral inefficiencies and risks, such as prolonged examination time, radiation ex-
posure [7, 16], and the potential for allergic reactions [9]. If multi-phase CE-CT
imaging can be synthesized using non-contrast CT (NCCT) imaging without the
administration of chemical CAs, it has the potential to reduce costs and elimi-
nate associated dangers. This would leverage the full capabilities of CT imaging,



2 Zhu et al.

2) Existing synthetic methods meet several unsolved limitations in multi-phase CE-CT imaging synthesis.
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Fig. 1. 1) Existing methods treat multi-phase synthesis as separate tasks, failing to en-
sure consistency across the synthesized multi-phase images. 2) We use a phase-causality
to exploit the multi-phase variation content and formulate multi-phase CE-CT image
synthesis as a sequence synthesis task.

leading to a significant impact on clinical applications and providing greater
value for patients [17].

Although existing state-of-the-art methods [10,12,15,18,19] achieved remark-
able performance in image synthesis, these methods pay all attention to single
modality and can not exploit the correlation between multi-phase images to
maintain the inter-phase dependencies and consistency (Fig. 1.1). Furthermore,
these methods struggle to address the unique challenges associated with synthe-
sizing multi-phase images. Specifically, 1) simultaneously learning multi-phase
variation information from one input for these methods is challenging. The con-
tents of CT imaging enhanced by CAs in different phases are different, coronary
arteries, aorta in portal venous phase; liver, pancreas, kidney in the arterial
phase; and kidney tumor in the delayed phase, simultaneously learning and clas-
sifying these contents is challenging. 2) Different from dense sequences (eg.video),
while multi-phase CE-CT imaging retains a consistent overall structure across
phases, the content differs considerably, posing a significant challenge to cap-
turing inter-phase dependencies [3]. What’s more, the inherent intricacies of CT
images also amplify the challenge [8]. Specifically, 1) CT imaging exhibits low
sensitivity to CAs, making it challenging to obtain an accurate feature repre-
sentation of CAs [5]. 2) CT imaging exhibits low contrast in soft-tissue struc-
tures, which makes extracting discriminative tissue representations for different
phases challenging. These challenges have resulted in the synthesis of multi-phase
contrast-enhanced CE-CT images remaining largely unexplored.

We propose a novel Causality-driven Spatio-temporal Generator (CSGen)
with three key novelties for synthesizing multi-phase CE-CT images. Specifi-
cally, 1): using a novel phase-causality to exploit the multi-phase variation con-
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tent for driving the multi-phase CE-CT synthesizing (Fig. 1.2), addressing the
challenge of capturing multi-phase discriminative features through one model.
Unlike previous approaches that directly intervene from inputs to outputs, our
phase-causality builds a causal graph to represent the dependency among multi-
phase images, variant factors (eg. CAs), and semantic contents and conducts
counterfactual inference over the causal graph to exploit the intrinsic causal-
ity of the discrepancy between the multi-phase images. More specifically, it
can drive generator in exploiting the multi-phase variation content for learn-
ing multi-phase CA-responding discriminative content from each phase. 2): A
new cross-phase Spatio-temporal Transformer (StTransformer) is proposed, es-
tablishing the spatio-temporal correlation between multi-phase CE-CT images.
Specifically, StTransformer leverages the dependencies within multi-phase CE-
CT images from both spatial and temporal perspectives, which empowers the
model to harness content and structural correlations across multi-phase CE-CT
imaging. Additionally, 3): a multi-phase adversarial learning (MpAL) is pro-
posed. Rather than focusing solely on the differences in feature distributions
between synthetic and real images, MpAL leverages multi-phase information to
enhance the discriminator’s ability to distinguish among multiple phases, further
encouraging the generator to learn discriminative features across all phases. Ex-
perimental results on three-phase CE-CT imaging synthesis show that CSGen
significantly improves the quality of synthetic multi-phase CE-CT images and
outperforms the state-of-the-art methods.

Our main contributions include:

– For the first time, multi-phase CE-CT imaging synthesis through a single
model has been achieved. A single, phase-interaction methodology that elim-
inates the need for chemical CAs in synthesizing multi-phase CE-CT images.

– CSGen, for the first time, converts multi-phase CE-CT imaging synthesis
to sequence synthesis, establishing the spatio-temporal correlation between
multi-phase CE-CT images, addressing the limitation in exploiting correla-
tion of multi-phase images.

– Phase-causality, for the first time, is used in synthesizing multi-phase CE-CT
imaging. Advanced than previous approaches that directly intervene from
inputs to outputs, it focuses on the causal inference between cross-phase
feature representation space, allowing for more flexible and adaptive inter-
ventions.

– StTransformer has the advantage of establishing cross-phase spatio-temporal
correlation, which addresses the challenge of Transformer in exploiting multi-
phase spatial and temporal dependencies.

2 Method

Our Causality-driven Spatio-temporal Generator (CSGen) integrates causal
inference with multi-phase adversarial learning, formulating multi-phase CE-
CT image synthesis as a sequence synthesis task (Fig. 2.2). Specifically, given
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Fig. 2. 1) The causal diagram of our phase-causality. 2)The framework of CSGen.

a NCCT image, CSGen employs a 3D generator—composed of stacked convo-
lutional blocks and a Spatio-temporal Transformer—guided by learned phase
causality to generate the multi-phase CE-CT sequence, including Portal Venous
Phase (VP), Arterial Phase (AP), and Delayed Phase (DP).

2.1 Phase-causality for learning phase-specific content

According to [11], the causal relationship between NCCT and CE-CT images
can be defined as follows: the multi-phase CE-CT images {yV P , yAP , yDP } ∈
RC×H×W are generated based on two independent factors: contrast agent:A
and content: C (Fig. 2.1). Here, A represents the injected CAs, while C rep-
resents the tissue-specific response observable in NCCT. Factor A modulates
the pixel intensities of various tissues over different time intervals, thereby yield-
ing multi-phase CE-CT images. Building on this causal inference, we implement
our phase-causality learning by extracting the phase-specific content latent code
{zAP , zV P , zDP }. Inspired by latent autoencoders [4, 14], we employ an adver-
sarial latent autoencoder to encode the phase-specific content latent. The adver-
sarial latent autoencoder consists an encoder (E), a decoder (G), a discriminator
(D), they learn to represent images with codes from a learned, discrete code-
book Z = {zAP , zV P , zDP }. More precisely, we approximate a given image yi

by x̂i = G(zi). We obtain zi using the encoder ẑi = E(yi) and a subsequent
element-wise quantization q(.) or each spatial code ẑi onto its closet codebook
zi:

zi = q(ẑi) := (argmin
∥∥ẑi − zi

∥∥) ∈ Rn×h×w (1)

To enable the codebook to learn discriminative feature representations from each
phase, a discriminator oversees the learning process. This end-to-end codebook
training is guided by the following loss function:

LV Q(E,G,Z) = ∥yi − ŷi∥2 + ∥sg[E(yi)]− zi∥22 (2)

Loss = arg min
E,G,Z

max
D

Ex∼q(x) [LV Q(E,G,Z) + LGAN ({E,G,Z}, D)] , (3)

where, LGAN is adversarial loss, ∥sg[E(yi)]− zi∥22 denotes commitment loss. To
improve the discrimination ability, three independent discriminators are used for
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three-phase CE-CT imaging evaluation. After model training, we can obtain the
phase-specific content latent.

2.2 Spatio-temporal Transformer establishes cross-phase correlation

To exploit spatio-temporal correlations among multi-phase images, the Spatio-
temporal Transformer (StTransformer) employs two key modules: (1) Cross-
phase Attention Module (CAM) and (2) Inter-phase Attention Module (IAM).
CAM explores both content and structural correlations across multi-phase CE-
CT images. Meanwhile, IAM establishes spatial dependencies within each phase
by utilizing inter-phase variance information, which captures the distribution of
CAs and extracts distinctive feature representations from multi-phase CE-CT
images. Given a sequence feature map X ∈ RC×D×H×W , where C is the number
of channels, D, H, and W represent the spatial dimension. The CAM projects
X into sequences [QD,KD, VD] ∈ R(CHW )×D, and performs attention calcula-
tion from the temporal aspect. Afterward, IAM projects YD into new sequences
[XQ;XK ;XV ] ∈ RD×(CHW ), and computing the spatial dependencies within
each phase:

YD = softmax
(
QDKT

D

dD

)
VD, X = softmax

(
XQX

T
K

d

)
XV . (4)

where d is a learnable scaling parameter. The two modules address long-range de-
pendencies in both spatial and temporal dimensions, facilitating the exploration
of inter- and intra-phase relationships within multi-phase images.

2.3 Multi-phase adversarial learning for discriminative training

To endow the generator with greater discriminative power, CSGen uses multi-
phase information for adversarial learning. Specifically, all of target multi-phase
CE-CT images that consist of cross-phase feature distribution are used as nega-
tive samples for training. The training loss for multi-phase adversarial learning
(MpAL) is:

LMpAL =
∑
ỹi,yj

Lce(y
j , 0)1[ỹi ̸= yj ] + Lce(ỹ

i, 0) + Lce(y
i, 1) (5)

where 1 is the binary indicator denoting whether the pixel belongs to same class,
Lce is cross entropy loss function, ỹi, yi represents the pixel in synthetic multi-
phase CE-CT images {ỹV P , ỹAP , ỹDP } and CE-CT images {yV P , yAP , yDP },
respectively.

2.4 Model training

In summary, the pre-learned phase-specific content latent from phase-causality
is initially injected into the generator through self-attention (Fig. 2.2). Under
the supervision of MpAL, the generator is supervised by

Loss = αLpixel−wise + βLperceptual + λLMpAL (6)
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Table 1. Quantitative results of multi-phase CE-CT imaging synthesis evaluated from
holistic (top) and tumor (bottom) perspectives.

Method Mapping
Holistic evaluation

PSNR ↑ SSIM ↑ NMAE ↓
AP VP DP Mean AP VP DP Mean AP VP DP Mean

CycleGAN [15] One-to-One 29.39 28.93 28.63 28.98 0.8833 0.8802 0.8788 0.8808 3.68 3.92 3.81 3.80
AGAN [6] One-to-One 29.05 29.16 29.11 29.11 0.8731 0.8666 0.8731 0.8709 4.01 3.92 3.91 3.95

CyTran [13] One-to-One 29.25 29.36 28.92 29.18 0.8345 0.8718 0.8624 0.8562 4.39 3.97 4.17 4.18
CSGen (our) One-to-Three 31.24 31.34 30.87 31.15 0.9074 0.9081 0.9044 0.9066 3.14 3.13 3.25 3.17

Method Mapping Tumor evaluation
AP VP DP Mean AP VP DP Mean AP VP DP Mean

CycleGAN [15] One-to-One 29.46 29.24 28.65 29.12 0.8884 0.8867 0.8844 0.8865 3.58 3.74 3.71 3.68
AGAN [6] One-to-One 29.14 29.27 29.22 29.21 0.8787 0.8726 0.8792 0.8768 3.95 3.82 3.80 3.86

CyTran [13] One-to-One 29.33 29.43 29.01 29.26 0.8377 0.8772 0.8682 0.8610 4.32 3.86 4.06 4.08
CSGen (our) One-to-Three 31.27 31.43 30.91 31.20 0.9125 0.9133 0.9101 0.9120 3.02 3.00 3.12 3.05

Lperceptual(ỹ
i, yi) =

∥∥V GG(ỹi)− V GG(yi)
∥∥
1

(7)

where, α, β and λ are weight coefficients. The Lpixel−wise computes the differ-
ence between synthetic multi-phase CE-CT images {ỹV P , ỹAP , ỹDP } and target
multi-phase CE-CT images {yV P , yAP , yDP } at the pixel level, where L1 loss is
used. The perceptual loss Lperceptual is utilized to compute the difference between
synthetic and true multi-phase CE-CT images in higher feature representations
extracted from pre-trained VGG network.

Lperceptual(ỹ
i, yi) =

∥∥V GG(ỹi)− V GG(yi)
∥∥
1

(8)

3 Experiments

3.1 Dataset and implementation

A total of 92 well-registered multi-phase CT volumes are used for evaluation.
Each volume has four phases including a non-contrast phase and three CA-
enhanced phases, VP, AP, and DP. During training, the voxel intensity was
normalized within each subject to a scale of [−1, 1] via division by the maximum
intensity. The training, validation, and test sets were randomly split in a 7:1:2
ratio. Our model is implemented using PyTorch and trained end-to-end with
Adam optimization. During training, the learning rate is initially set to 0.0001
and decreased by a weight decay of 1.0 × 10−6. The weight coefficients α, β,
λ are set to 1.0, 1.0, 0.5 respectively. The performance is evaluated from 1)
Holistic aspect: evaluating the synthesis quality from a global view; and 2)
Local aspect: evaluating the sensitivity to tumor by using tumor labels. The
peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) metrics,
and normalized mean absolute error (NMAE) between the synthesized and true
CE-CT images are measured.
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Fig. 3. Experimental results demonstrate that our model can more accurately enhance
hepatic artery, aorta, and liver tumors than existing methods. b) The intensity distri-
bution and t-SNE visualization of synthesis CE-CT images.

3.2 Comparison with state-of-the-art methods

Table 1 shows the quantitative result of CSGen and state-of-the-art methods
from both holistic and liver tumor perspectives. In all three phases of CE-CT
imaging, our CSGen exhibited superior performance in terms of PSNR, SSIM,
and NMAE compared to other methods. Additionally, from the quantitative
result of synthetic tumors, CSGen also achieved the best quantitative result.
Notably, all compared methods employ a one-to-one mapping approach. These
experimental results demonstrate that our CSGen has higher sensitivity to CA-
aware feature distribution and are able to successfully synthesize multi-phase
CE-CT images. Fig. 3 (a) clearly shows that our CSGen consistently enhances
these CA-related organs including hepatic artery, aorta, and tumors across all
phases, which provides compelling evidence for the effectiveness of our model in
the synthesis of multi-phase CE-CT images. The feature distribution ( Fig. 3
(b)) of synthesized CE-CT images reveals that the intensity and feature dis-
tribution (features extracted by VGG) of CE-CT images synthesized by our
CSGen is notably closer to true CE-CT images compared to other methods,
which highlights the effectiveness of our approach in leveraging cross-domain
discriminative features and proves that existing methods have low sensitivity in
the CAs responding areas.

3.3 Effect analysis of CSGen

Table 2 lists the quantitative results of various modules. StTransformer as-
sists the baseline to obtain 1.96, 2.18, and 1.08 holistic improvements and 1.91,
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Table 2. Quantitative results of synthesized CE-CT imaging.

Method Holistic evaluation
PSNR↑ SSIM (%)↑ NMAE↓

Baseline StTransformer PC MpAL AP VP DP Mean AP VP DP Mean AP VP DP Mean
✓ 28.39±3.00 28.36±2.88 27.88±2.67 28.21 87.98±5.86 88.04±5.74 86.87±5.54 87.63 4.24±1.43 4.25±1.44 4.43±1.46 4.31
✓ ✓ 30.31±4.37 30.27±4.41 29.94±4.50 30.17 89.08±5.62 90.32±5.81 90.02±5.84 89.81 3.25±1.56 3.18±1.70 3.27±1.72 3.23
✓ ✓ 30.44±4.26 30.44±4.28 29.97±4.29 30.28 87.43±5.80 90.35±5.84 89.83±5.78 89.20 3.30±1.55 3.11±1.67 3.27±1.67 3.23
✓ ✓ 28.76±2.99 28.74±3.12 28.34±2.94 28.61 86.27±2.99 89.34±5.12 88.58±4.91 88.06 3.72±1.33 3.62±1.37 3.76±1.35 3.70
✓ ✓ ✓ ✓ 31.24±5.23 31.34±5.37 30.87±5.32 31.15 90.74±6.06 90.81±6.22 90.44±6.29 90.66 3.14±1.69 3.13±1.83 3.25±1.88 3.17

Tumor evaluation
Baseline StTransformer PC MpAL AP VP DP Mean AP VP DP Mean AP VP DP Mean

✓ 28.44 ± 2.90 28.45±2.77 27.97±2.60 28.29 88.54 ± 5.39 88.62±5.30 87.51±5.02 88.23 4.18±1.36 4.18±1.31 4.33±1.35 4.23
✓ ✓ 30.29±4.17 30.29±4.27 30.01±4.38 30.20 89.56±4.88 90.78±5.14 90.59±5.07 89.31 3.15±1.41 3.09±1.53 3.15±1.56 3.13
✓ ✓ 30.41±3.99 30.50±4.08 30.04±4.18 30.32 87.97±4.96 90.89±5.12 90.42±4.99 89.76 3.19±1.38 2.98±1.48 3.15±1.49 3.11
✓ ✓ 28.97±2.81 28.95±2.90 28.51±2.78 28.81 87.05±4.23 90.11±4.31 89.37±4.06 88.84 3.54±1.17 3.44±1.18 3.59±1.20 3.52
✓ ✓ ✓ ✓ 31.27±5.04 31.43±5.22 30.91±5.15 31.20 91.25±5.39 91.33±5.59 91.01±5.50 91.20 3.02±1.55 3.00±1.64 3.12±1.69 3.05

NCCT Arterial phase Venous phase Delayed phase

Focusing arterial, providing detailed 

visualization of arterial.

Focusing on liver, spleen, and 

portal veins.

Provides information in contrast material, 

enhancing kidneys.

Fig. 4. The heatmap generated by phase-causality on three phases.

1.08, and 1.10 local improvements on mean PSNR, mean SSIM, and mean
NMAE, respectively. These improvements reveal the advantage of StTransformer
in utilizing the spatio-temporal correlation of multi-phase CE-CT images. The
phase-causality (PC) assists the baseline to obtain a 2.07, 1.57, and 1.08 holis-
tic improvement and obtain a 2.03, 1.53, and 1.12 local improvement on mean
PSNR, mean SSIM, and mean NMAE PSNR, respectively. Those improvements
demonstrate that phase-causality enhanced the generator’s ability to learn CA-
responding content information. Furthermore, the learned phase-causality con-
tents are illustrated in Fig. 4, which reveals its aligns with discriminative features
specific to each phase. In AP phase, the arterial vasculature is captured and en-
hanced, revealing intricate details of arterial structures and early enhancement
within organs. In VP phase, features of the portal venous system are empha-
sized. In DP phase, the excretory characteristics of the contrast material become
more apparent, particularly enhancing kidney visualization. These experimental
results underscore the excellent ability of our phase-causality in learning CA-
responding content from each CE-CT image. Additionally, MpAL assists the
model to obtain a 0.40, 0.43, and 0.61 holistic improvement, and 0.52, 0.61 and
0.71 local tumor improvement on mean PSNR, mean SSIM, and mean NMAE,
respectively. These improvements also prove the effectiveness of MpAL in cap-
turing global and local discriminative contextual information.

4 Conclusion

Our CSGen is the first to successfully synthesize three-phase CE-CT imaging
from NCCT using a single model. CSGen uses three novel mechanisms: 1) phase-
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causality mechanism; 2) spatio-temporal Transformer; 3) multi-phase adversarial
learning to address the challenge of three-phase CE-CT synthesis. Experiments
prove that the synthesized three-phase CE-CT imaging by CSGen is equivalent
to real CE-CT imaging and outperforms state-of-the-art synthesis methods.
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