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Abstract. Leveraging the powerful capabilities of diffusion models has
yielded quite effective results in medical image segmentation tasks. How-
ever, existing methods typically transfer the original training process di-
rectly without specific adjustments for segmentation tasks. Furthermore,
the commonly used pre-trained diffusion models still have deficiencies in
feature extraction. Based on these considerations, we propose LEAF, a
medical image segmentation model grounded in latent diffusion models.
During the fine-tuning process, we replace the original noise prediction
pattern with a direct prediction of the segmentation map, thereby re-
ducing the variance of segmentation results. We also employ a feature
distillation method to align the hidden states of the convolutional layers
with the features from a transformer-based vision encoder. Experimen-
tal results demonstrate that our method enhances the performance of
the original diffusion model across multiple segmentation datasets for
different disease types. Notably, our approach does not alter the model
architecture, nor does it increase the number of parameters or computa-
tion during the inference phase, making it highly efficient. Project page:
https://anonymous.4open.science/r/LEAF-F669
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1 Introduction

The diffusion model[20] has achieved successful results in multiple image gen-
eration tasks, demonstrating itself as a scalable approach to generate high-
dimensional visual data. Due to its powerful capabilities, recent studies have
begun exploring its potential for application in other vision tasks. For exam-
ple, DMP[11] adapts a text-to-image diffusion model to obtain faithful estima-
tions on several dense prediction tasks. Marigold[10] directly fine-tunes Stable
Diffusion[17] for image-conditioned depth generation, achieving state-of-the-art
(SOTA) performance on multiple depth estimation datasets while enabling zero-
shot transfer to unseen data.

Given the powerful capabilities of diffusion models, numerous studies have ex-
plored their application to medical image segmentation[24,25,26], demonstrating
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their remarkable potential and sparking growing research interest in the com-
munity. However, these methods typically directly adopt the original diffusion
model training process and often incorporate overly complex modules to enhance
feature representation. While enhancing performance, these designs bring about
computational inefficiencies and obscure the fundamental differences between
segmentation and generation tasks. In contrast, SDSeg[13] employs a latent dif-
fusion model and improves inference speed and accuracy by utilizing a single-
step reverse process. Nevertheless, this approach still fails to address the inherent
divergence between segmentation objectives (e.g., pixel-wise classification) and
generative modeling principles (e.g., noise prediction). Several prior works have
investigated alternative parameterization methods[19,1] to generate detailed and
realistic natural images. However, these approaches either rely on multi-step
progressive generation or yield comparable evaluation metrics, thereby offering
limited insights for this task.

Meanwhile, the widely used pre-trained diffusion models are based on a con-
volutional U-Net architecture. Many studies have pointed out that Transformer
architectures[22] can effectively enhance feature extraction, although they also
increase both the computational cost and the number of parameters. In ad-
dition, some research[12] indicates that while estimating pixel-level geometric
attributes from a single image requires a comprehensive understanding of the
scene, merely predicting results in the input space is insufficient for learning a
robust representation. Consequently, achieving a good trade-off between speed
and performance remains a significant challenge in current work. Distillation
methods offer a promising solution. Notably, the recent REPA approach[27] ac-
celerates model convergence by aligning the features of two Transformers[22],
leading to improved generation performance.

Motivated by these concerns, we propose LEAF (Latent Diffusion with
Efficient Encoder Distillation for Aligned Features). We analyze the diffusion
formulation and discover that using noise prediction in segmentation tasks might
not be optimal, as it tends to amplify prediction errors. Therefore, we replace this
approach with one that directly predicts the sample. Moreover, we implement a
novel and simple distillation method to enhance the feature representation of con-
volutional networks, allowing the model to align its features with those obtained
from powerful Transformer-based models. Such alignment enhances segmenta-
tion performance without incurring any additional computational overhead or
parameter increase during inference.

In conclusion, our main contributions are as follows:

– We replace the high-variance ϵ-prediction, originally used in diffusion mod-
els for generation tasks, with the low-variance x0-prediction that is better
suited for segmentation tasks, and provide the corresponding mathematical
explanation.

– We design an efficient feature alignment method that enriches the represen-
tation of U-Net by distilling a powerful visual encoder, thereby improving
segmentation performance on multiple medical imaging datasets across var-
ious diseases.



LEAF: Latent Diffusion with Efficient Distillation for Aligned Features 3

– Our method allows the alignment module to be removed during inference,
incurring no additional computational or memory overhead. Moreover, this
plug-and-play approach does not alter the internal structure of the model
and can be easily transferred to other diffusion-based models.
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Fig. 1. An illustration of training pipeline of LEAF, c means concatenate, the decoder
D is omitted and the noise scheduler is variance-preserving, e.g. α2

t + σ2
t =1.

2 Methods

The framework of our method is shown in Figure 1. For the conditioning ap-
proach, we follow the process of SDSeg[13]. Given a Ground-Truth segmentation
map y, we use a frozen encoder E to map it into the latent variable zy, and
add noise via Equation (1) to obtain the noisy variable zyt , where ϵ is random
Gaussian noise, and αt and σt are a set of hyperparameters pre-defined by the
noise scheduler; typically, αt decreases while σt increases. For the image x, we
use a learnable encoder Eθ, initialized with the weights of E , to map it into zx.
Then, we concatenate concat(zx; zyt ) as the input to the U-Net and obtain the
output ẑy.

zt = αtz + σtϵ (1)

2.1 Parameterization Types

Current diffusion models are used primarily for generation tasks, and prediction
objectives generally utilize the following two approaches: (1) ϵ-prediction[9], in
which the model learns to predict the noise ϵ; (2) v-prediction[19], in which the
model learns to predict the velocity defined by Equation (2).
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v := αtϵ− σtz (2)

These parameterization types can be used to estimate the original image via
the formula in Equation (3):

ẑ =


(zt − σtϵ̂)/αt , If ϵ-prediction
αtzt − σtv̂ , If v-prediction
ẑ , If x0-prediction

(3)

Since we freeze the decoder D during training, the error in x̂ originates pri-
marily from ẑ. Note that both parameterization methods involve a coefficient
based on variance when reconstructing zt; as t → T , σt increases while αt de-
creases. In diffusion models that employ a single-step reverse process at t = T ,
this further amplifies the error in the estimation.

Therefore, we propose that the x0-prediction[9] approach is more suitable for
image segmentation. Using x0-prediction, the diffusion model directly outputs ẑ
without introducing additional scaling coefficients, thereby avoiding unnecessary
errors. Compared to the other two prediction methods, this approach yields more
stable and accurate results. In summary, for a diffusion model pre-trained with
either ϵ-prediction or v-prediction, we fine-tune it directly using x0-prediction so
that it directly predicts the segmentation map. The corresponding loss is shown
in the Equation (4), using the L1 loss as implemented in SDSeg.

Lpred = LL1(ẑ
y, zy) (4)

2.2 Features Alignment

In recent studies, enhancing the ability of diffusion models to extract features
is typically achieved by modifying the model architecture. As demonstrated in
TransUNet[4] and Diff-Trans[5], Transformer architectures can effectively im-
prove the encoder’s feature extraction capability, but they also significantly in-
crease the number of model parameters and computational cost. To encourage
a U-Net based latent diffusion model to learn rich representations, we introduce
a regularization strategy to augment the capacity of convolution, enabling it to
capture the representations learned by Transformer architectures.

Inspired by REPA[27], we utilize a pre-trained self-supervised powerful visual
encoder fθ, such as DINOv2[14] or CLIP[16], as the base model for providing
robust visual representations. It takes a clean image x as input and produces
hidden states h = fθ(x) ∈ RL×D, where L is the number of patches and D is the
embedding dimension. In the encoder block of the denoising U-Net, we obtain a
feature map m ∈ RC×H×W and reshape it into RHW×C , with the condition that
HW = L. Then, we use a multilayer perceptron (MLP) ϕ to project m, yielding
ϕ(m) ∈ RL×D, and compute a distillation loss based on cosine similarity:

Ldistill = L(h, ϕ(m)) = − 1

N

N∑
i=1

(
hi ·mi

∥hi∥ · ∥mi∥
) (5)
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We add this loss to the prediction loss above, and the total objective loss is
shown in Equation(5), where λ is a positive constant controlling the strength of
the distillation alignment.

Ltotal = Lpred + λLdistill (6)

2.3 Inference

During inference, we initialize the segmentation map with standard Gaussian
noise zyT , and encode the input image into zx using Eθ. The concatenated fea-
tures (zyT ; z

x) are then fed into the U-Net. Notably, we remove the pre-trained
visual encoder and MLP during this phase, ensuring no additional parameters
are introduced compared to the original model. Following SDSeg[13], we apply a
single-step reverse process to obtain ẑy, which is then decoded to the pixel space
via D to produce the final segmentation map.

3 Experimental Results

3.1 Experimental setup

Datasets and Evaludation Metrics To comprehensively evaluate the pro-
posed method, we conduct experiments on four public medical image segmenta-
tion tasks: (1) Optic-cup segmentation from retinal fundus images (REFUGE2
(REF)[15]), (2) Polyp segmentation from colonoscopy images (CVC-ClinicDB
(CVC)[2]), (3) COVID-19 lesion segmentation (QaTa-Covid19 (Qata)[7]), and
(4) Skin lesion segmentation from dermoscopy images (ISIC 2018[6,21]). We use
mean Dice and mean IoU as primary evaluation metrics. For REFUGE2, we
used the data partition defined in SDSeg. For ISIC 2018, we adopted a training-
testing ratio of 7 : 3, while for CVC, we utilized an 80:10:10 data partition.
QaTa, on the other hand, used the default training and testing sets.

Implementation Details We implemented LEAF using the PyTorch plat-
form and trained/evaluated on a single NVIDIA A800 GPU. All images were
resized to a resolution of 256 × 256. The pre-trained unconditional latent dif-
fusion model was based on LDM-KL-8[17]. To optimize the model, we utilized
the standard AdamW optimizer with a batch size of 4. The learning rate was
set to 4× 10−5 with a warm-up constant learning rate scheduler. To handle the
concanated input, we duplicated the U-Net input layer from 4 channels to 8
channels and initialized its weights by halving the original weights as mentioned
in Marigold[10]. The pre-trained vision encoder was DINOv2[14].

3.2 Performance Comparison

We conducted extensive experiments in various evaluated datasets to assess the
effectiveness of LEAF, as shown in Table 1. LEAF represented a generic approach
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for latent diffusion models without domain-specific modules tailored to particular
medical imaging modalities. Consequently, our comparisons focused on models
with strong generalization capabilities. For a fair comparison with SDSeg, we
re-trained it under our framework using the same configurations. MedSegDiff
was re-evaluated on CVC. The results of QaTa and ISIC2018 were directly cited
from MMDSN[23] and BGDiffSeg[8], and REF from SDSeg[13], CVC from Diff-
Trans[5].

Table 1. Performance comparison on our proposed model and existing SOTA medical
segmentation models.

Model REF CVC QaTa ISIC2018
Dice IoU Dice IoU Dice IoU Dice IoU

CNN/Transformer-based
U-Net[18] 80.1 - 85.6 80.5 79.0 69.5 87.6 77.9

TransUNet[4] 85.6 - 92.0 87.8 78.6 69.1 88.7 79.7
Swin-UNet[3] 84.3 - 91.4 87.4 78.1 68.3 - -

Diffusion-based MedSegDiff[24] 86.3 78.2 92.4 88.9 76.5 67.2 85.5 74.7
SDSeg[13] 88.7 80.9 93.6 89.3 77.6 68.0 88.1 79.7

Proposed LEAF 89.5 81.5 95.2 90.9 80.2 71.0 90.5 84.1

As shown in Table 1, LEAF outperforms all baseline models on datasets
involving various types of medical image, validating its effectiveness and gen-
eralizability. While sharing the same U-Net architecture as SDSeg, our method
replaces its parameterization type and aligns convolutional layers with features
extracted from a Transformer-based encoder, achieving significant performance
improvements.

3.3 Ablation Study

Ablation for fine-tuning pipeline We establish the baseline as the model
using the original ϵ-prediction without feature alignment (first row in Table 2).
From the table, we observe that merely changing the prediction method from
ϵ-prediction to v-prediction yields significant performance gains. Furthermore,
switching to x0-preditcion without scaling factors further improves model per-
formance. Finally, feature alignment achieves the highest performance compared
to other configurations. Although these features come from different model ar-
chitectures and DINOv2 is not fine-tuned on medical images, it can still improve
the segmentation performance. We emphasize that these improvements are con-
sistent across all evaluated datasets, with nontrivial magnitude.

Ablation for Feature Alignment We investigate the hyperparameter λ that
controls alignment strength and the model size of the vision encoder, with results
shown in Table 3. Firstly, the optimal value of λ generally varies across different
datasets, which may be related to the distribution and inherent characteristics
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Table 2. Ablation study for parameterization and features alignment. The rows with
gray color highlight the features of the model distilled from the vision encoder during
training for clearer comparison.

Parameterization
Types

Feature
Alignment

REF CVC QaTa ISIC2018
Dice IoU Dice IoU Dice IoU Dice IoU

ϵ-prediction ✗ 88.47 79.59 90.15 83.68 74.27 63.80 87.67 80.13
ϵ-prediction ✓ 87.61 78.43 91.63 87.10 74.56 63.97 87.34 79.48
v-prediction ✗ 89.21 80.92 93.75 89.32 79.10 69.74 90.35 83.91
v-prediction ✓ 89.30 80.88 94.89 90.44 79.32 69.98 90.52 84.11
x0-prediction ✗ 89.21 79.08 94.49 89.94 79.08 69.85 90.39 83.94
x0-prediction ✓ 89.53 81.45 95.17 90.94 80.15 71.04 90.54 84.18

of the data. Secondly, the impact of different λ values on model performance
is not significant, for example, the maximum absolute difference of dice score
on ISIC2018 is 0.3, while on QaTa, it is over 1.0. We believe this is due to the
fact that the images in QaTa contain more structural information, making them
more sensitive to the distillation strength. Overall, the model performs better
with λ > 0 than it does with λ = 0, further validating the effectiveness of feature
alignment.

Table 3. The effect of hyperparameter λ for features alignment.

λ
REF CVC QaTa ISIC2018

Dice IoU Dice IoU Dice IoU Dice IoU
0 89.21 79.08 94.49 89.94 79.08 69.85 90.39 83.94

0.15 89.39 81.19 95.07 90.77 79.62 70.37 90.24 83.83
0.25 89.41 81.24 94.97 90.57 79.74 70.65 90.54 84.06
0.50 89.33 81.12 94.21 89.35 80.05 70.87 90.43 84.06
0.75 89.53 81.45 95.01 90.67 79.98 70.93 90.51 84.05
1.0 89.44 81.27 95.17 90.94 79.87 70.77 90.34 83.90
1.25 89.43 81.27 95.07 90.76 80.15 71.04 90.30 83.93

3.4 Quality Results

Stability Diffusion models are non-deterministic models; thus, many previous
models have attempted to reduce segmentation uncertainty by running the model
multiple times and ensembling the results in some way as the final outcome,
which increases the inference speed of the model. The segmentation results for
LEAF are obtained from a single run, so it is necessary to demonstrate their
stability, with the results presented in Table 4.

The experimental results demonstrated that the ϵ-prediction method indeed
has a larger variance compared to the x0-prediction method. Moreover, the stan-
dard deviation of the models trained using the x0-prediction method is mostly
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Table 4. Stability experiments. We selected 10 different random seeds to inference 10
times and calculated the standard deviation of the Dice score (%).

Parameterization Types REF CVC QaTa ISIC2018
ϵ-prediction 0.09 0.32 0.14 0.29
x0-prediction 0.05 0.11 0.08 0.06

on the order of 10−2, indicating a very small difference. This difference is signif-
icantly smaller than the improvement brought about by our proposed method,
further proving the effectiveness and stability of our approach.

Visualization Additionally, we visualize the segmentation results on different
medical segmentation tasks, as shown in Figure 2.

Image Label -pred -pred Ours

Fig. 2. Visualization of segmentation results.

4 Conclusion

In this paper, we propose LEAF, an efficient and generalized framework for fine-
tuning a latent diffusion model for medical image segmentation. We investigate
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the effect of parameterization type and propose to use x0-prediction parame-
terization for segmentation task. We also introduce a simple featrue alignment
method via distilling vision encoder, providing a better representation for the
CNN-based U-Net. LEAF brings about zero cost for inference and can be easily
adapted to other LDM-based segmentation models.
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