MICCAI " RISIIEY VEISION 15:dvalldRIE O SPHING

Does Connectome Harmonic Analysis pass the
Spin Test?

Raphaél Vock!2, Antoine Grigis', Benoit Dufumier', Edouard Duchesnay’

!Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, Saclay, France
2raphaelvock@gmail .com

Abstract. Connectome harmonic analysis has been proposed as a mul-
timodal approach for studying brain dynamics by decomposing func-
tional MRI signals in a Fourier basis informed by the structural con-
nectome derived from diffusion MRI. In this work we pose the following
question: is the propensity of the connectomic Fourier basis to recon-
struct resting state fMRI signals truly contingent upon anatomical pri-
ors? We present evidence that it is not, by demonstrating that when
fewer than n = 100 modes are considered the connectomic eigenbasis
obtained through state-of-the-art methodology performs similarly to ge-
ometrically transformed versions of that same basis. The main theoretical
contribution of this paper is the construction of a regular planar embed-
ding of the left hemisphere’s cortical surface, which we use to compute
a smoothly parametrised family of cortical transformations which form
the basis for an improved Spin Test.
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1 Introduction

Connectome Harmonic Analysis (CHA) [2] is a multimodal paradigm which seeks
to understand brain dynamics via the decomposition of functional MRI (fMRI)
signals in a Fourier basis informed by the structural connectome derived from
diffusion MRI. By borrowing tools from traditional signal processing, CHA is
straightforward to compute, nonparametric, builds upon physical principles for
brain dynamics, and demonstrates the ability to accurately compress fMRI sig-
nals using a relatively small number of modes (fewer than 1% of the number of
dimensions in the original signal). It has been rapidly propelled to the forefront
of structure—function coupling models of brain dynamics. Some applications have
been given towards the study of consciousness [6] and psychedelic-induced brain
state alterations [3,10].

Pang and colleagues [7] have cast doubts upon the meaningfulness of these
connectomic modes by showing that an eigenbasis obtained using the cortical
surface’s intrinsic geometry does just as well as the connectomic eigenbasis, in
terms of either basis’s ability to reconstruct fMRI data from a limited number
of modes. In the present work we use the well-known Spin Test framework [1] to
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provide further evidence for CHA’s lack of robustness. The idea of the Spin Test
is to stress-test a given fMRI methodology by observing how certain statistics
respond to the remapping of the input data via transformations of the cortical
surface.

In particular, we seek to answer the following question: does the connectome-
informed Fourier eigenbasis induce more efficient representations of resting state
fMRI data than that same basis transformed via a continuous remapping of the
cortical surface? We demonstrate that the eigenbasis obtained through state-
of-the-art methodology [8] does not outperform rotations of that basis. This
raises questions as to the robustness of CHA, at least if we are to consider the
reconstruction accuracy metric as meaningful. The main methodological con-
tribution of this paper is the development of an improved version of the Spin
Test parametrised by a continuous parameter which demonstrably overcomes
the shortcomings of the original test.

Previous work has been dedicated to applying the Spin Test to CHA in
various other contexts, e.g. [6], but to our knowledge this is the first attempt to
study the reconstruction accuracy metric in terms of that framework.

2 Materials and method

2.1 HCP dataset

Our work makes use of the Human Connectome Project (HCP) dataset for both
diffusion MRI data, used in the construction of the connectomic eigenbasis (§2.4),
and resting state fMRI data used to evaluate bases via the reconstruction accu-
racy metric (§2.3).

2.2 Functional decomposition bases

From the FreeSurfer [4] population-averaged, high-resolution template for the
left hemisphere’s cortical surface (fsLR 32k), we remove the interhemispheric
barrier in order to obtain a 29,696-vertex triangle mesh corresponding to the
idealised geometry of the adult human, left hemisphere, mid-thickness cortical
surface. We denote this surface using the symbol C. A resting state fMRI signal
on the cortical surface can be represented as a function f(x,t) of both space
and time, where x denotes a point on the idealised cortical surface of the left
hemisphere C, and t is some time point in a fixed interval. The motivation for
CHA resides in the need for an anatomically informed linear basis (e, ...,en)
of RC, i.e. the space of functional signals at a given time. Note that the basis
vectors e; are time- and subject-independent, and in particular are computed
generically with no prior knowledge of the fMRI signal distribution. A given
time-dependent fMRI signal can subsequently be decomposed in that eigenbasis
as f(x,t) = Zivzl ci(t)e; where the coefficient ¢;(t) depends only on time. We
may assume without loss of generality that the e; are orthonormal, such that
the coefficient ¢;(t) can be explicitly obtained using the standard inner product
over RC as ¢;(t) = (f(e,t),€;).
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2.3 Evaluation metric

Following [2,7, 8] we evaluate the quality of a given basis using the reconstruc-
tion accuracy metric which is defined as follows. For each resting state fMRI
signal f(x,t) corresponding to one of the 252 subjects used by [7] in the Human
Connectome Project database, we compute the truncated reconstruction signal
fn(x,t) = >0 | ¢;(t)e; containing the n first terms of the signal in that basis.
The reconstructed signal is projected (by means of spatial averaging) onto the
180 regions of interest (ROIs) in the left hemisphere as defined by Glasser and
colleagues [5].

By taking the pairwise Pearson correlation coefficient of the truncated recon-
struction on each ROI one obtains an 180 x 180 correlation matrix R/, which is
known as the truncated functional connectivity matrix. Denoting by R the (full)
functional connectivity matrix obtained similarly from the original signal f(x,t),
one can compare R and R’ in order to gauge the accuracy of the reconstructed
signal. In particular, we compute the correlation between the sequences R;<;,
R;_;, i.e. the 180 x 179/2 coefficients in the lower triangle portion (we con-
sider only the lower triangle portions of these matrices since they are symmetric
and have units on the diagonal). In summary we define r := Corr(R;<;, R}_;),

henceforth known as the reconstruction accuracy, which depends on the choice
of basis (e1,...,eyn) as well as on n, the number of modes.

2.4 Connectomic eigenmodes

The following idea, due to Atasoy and colleagues [2], is known as CHA, and
consists of introducing diffusion MRI data in order to inform the choice of a
functional decomposition basis (eq,...,en).

From the HCP diffusion MRI dataset, Mansour and colleagues [8] derive a
population-averaged structural connectome which applies spatial smoothing and
correction for gyral bias. This connectome induces a weighted graph structure
of C whose (weighted, degree-normalised) graph Laplacian A we go on to com-
pute. Since it is a symmetric and positive semidefinite matrix, it has N = |C|
eigenvectors eq,...,ey of /A, associated with the increasing sequence of nonneg-
ative eigenvalues 0 < A1 < -+ < Ay, which form an orthogonal basis for RC,
i.e. the space of all possible functional signals at a fixed time point. Note that
the first few eigenvalues intuitively correspond to patterns with low spatial fre-
quency, and as n increases higher frequency information tends to be captured by
fn(x,t). Note also that when n = N, fy(x,t) perfectly reconstructs the original
signal.

2.5 Spin Test

In the case of CHA we can formulate the Spin Test as follows: if p : C —
C is a (bijective) transformation of the cortical surface, how accurately does
the transformed eigenbasis (peq, ..., pen) reconstruct resting state fMRI signals
compared with the original basis (ey,...,en)?
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As originally formulated in [1], the Spin Test framework makes use of a spher-
ical projection of the cortical surface o : C — 52 where §? := {x € R?* | ||x|| = 1}
denotes the (hollow) 2-sphere. A random orthogonal transformation @ : R? — R3
is applied to that embedding and a nearest neighbour search is used to match
points between the embedding ¢(C) and the transformed embedding Q(c(C)).
The crudeness of this method leads to several shortcomings:

1. The resulting transformation p : C — C need not be bijective because two
points in the embedding may well be mapped to the same nearest neighbour.

2. Consequently, the transformed basis (peq, ..., pen) need not be orthogonal
(or indeed even a basis properly speaking).

3. Since the interhemispheric barrier is embedded onto an irregular patch of the
sphere, the resulting transformation p : C — C violates spatial continuity.

4. The variance due to the random orthogonal transformation @) lacks an ex-
plicit parametrization.

We overcome these shortcomings using a precise and elegant alternative based
on a regular planar embedding ¢ : C — D? where D? = {x € R? | ||x|| < 1}
denotes the 2-dimensional unit disc. By exploiting the symmetries of the D?
we subsequently obtain a family of maps py smoothly parametrised by an angle
0 € [0,27). The construction of ¢ is given as follows. Since C has the structure a
triangle mesh, it automatically inherits a graph structure. Note that C has the
topology of the hemispherical shell whose boundary (i.e. equator) corresponds
anatomically to the interhemispheric barrier. By associating these points in the
appropriate order to the vertices of regular 243-gon centred in the origin of R?
one can apply the Tutte Spring Embedding theorem [9] so as to obtain a planar
embedding of C in the unit disc. In order to promote uniformity of the embedding
we use springs with nonzero free length ¢ = 1/ VN ~ 5.8 x 1073, and after the
convergence of the physical model we apply a sweeping radius regularisation
step. We illustrate this sequence of transformations in Fig. 1. More detailed
descriptions of the algorithms are given in §5.

Quw

U

Fig. 1: From left to right, colour-coded by z-coordinate in brain space: (1) vertices
of C; (2) Tutte embedding of C; (3) Tutte-like spring embedding with nonzero
free spring length; (4) Spring-based embedding after radial regularisation

By passing through to D? via ¢ one easily computes a family of transfor-
mations of C parametrised by an angle § € [0,27). Indeed, each angle 6 gives
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rise to a transformation of D? in the form of a rotation pg by # radians about
the origin. One pulls back to a transformation of C (also denoted py) via the
composition ¢! o py o ¢, as illustrated in the following diagram.

#DQ

c
] o
c

¢! D*

In practice, since we lack an explicit form for ¢—!, we compute ¢! o pg o ¢
by solving the Euclidean linear assignment problem (LAP) (pg 0 ¢(X))xec ~
(¢(x))xec. Owing to the computational complexity of the LAP (cubic in N =
29,696) we partition the embedding space f(C) into three concentric annuli in
order to apply a divide-and-conquer strategy by solving the associated LAP on
each annulus. Since pg preserves annuli this yields a fair approximation to the
exact solution.

With the transformation py computed we can compute the transformed basis
(poe1, ..., pgen). To correct the artifacts in the computation of py we select those
points with assignment cost (in terms of the previous LAP step) greater than a
threshold a = 0.1 and replace their value by the average of their neighbors on
the triangular mesh. We then apply a global smoothing process by repeatedly
applying a 10-fold neighbour averaging process, and finally we orthogonalise the
resulting basis using the Gram—Schmidt process.

Fig. 2: From left to right: (1) third connectome eigenmode e3 projected in brain
space; (2) ez in embedding space; (3) e3 rotated by 7/2 and smoothed; (4) e3
rotated and smoothed, in brain space

3 Results

Using the method described in §2.5 we compute, for 243 regularly spaced angles
6 € [0, 27), the transformed connectomic eigenbasis (pge1, . .., pgen). For each of
the 252 preprocessed resting state fMRI sequences used to compute the average
structural connectome, we compute the values of the reconstruction accuracy
r =r(n,0) as a function of both the number of modes n € {25, 50, 75,100} and
the transformation parameter 6, using the formula described in §2.3. We plot
the effect of 6 on r for the selected values of n in the left plot in Fig. 3. For
fixed n and 0, treating subjects as random effects, we compute the p-value of the
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t-test corresponding to the statistical hypothesis r(0,n) > r(0,n); we plot the
results on the right side of the same figure. The legend includes an estimation of
the proportion of those angles  with p > 0.05, as a function of n, i.e. the prob-
ability that the connectomic eigenbasis transformed through a random cortical
transformation not be significantly worse than the untransformed eigenbasis.
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Fig. 3: Left: reconstruction accuracy as a function of the parameter 6 of the corti-
cal surface transformations, for selected values of n. Right: p-value corresponding
to the t-test for r(0,n) > r(f,n) as a function of 0, for fixed n. The dashed red
line corresponds to the significance threshold p = 0.05. The legend includes an
estimation, for each n, of the proportion of those values of 6 with insignificant
p-values.

4 Discussion

Were the connectomic eigenbasis to be truly contingent upon anatomical priors,
one would expect an arbitrary rotation of the cortical surface to induce a sharp
drop-off in the prescribed metric. This does not appear to be the case (left plot
of Fig. 3), and our intuition is rigorously confirmed by the plot of the p-values
corresponding to the ¢-test for the statistical hypothesis 7(0,n) > r(6,n). Indeed,
a non-negligible proportion of the transformed eigenbases rotated by a nonzero
angle 0 yield reconstruction accuracies that are not significantly inferior to the
untransformed eigenbasis. The proportion of those angles are reported in the
legend of Fig. 3 and in all cases one can see that this proportion is between 6
and 37%.

Our findings seem to suggest that in the scope of this study, that is to say
the reconstruction of resting state fMRI data in a small number of connectomic
modes, the CHA theory does not pass the Spin Test. In other words, the recon-
struction accuracy in terms of one commonly accepted metric does not appear to
be truly contingent upon the anatomical data and instead results from generic
analytic properties of that basis.
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We emphasise the limited scope of our study, and the fact that additional
tests should be carried out e.g. on task-evoked data to confirm this hypothe-
sis. Moreover, our conclusion breaks down when the number of modes increases
(n > 200) which suggests that CHA encodes anatomically relevant information
in the high-frequency modes. Further investigation over more diverse cohorts
would constitute an essential next step to confirming our results. Also, the re-
construction metric employed in this paper is a somewhat crude measure of an
eigenbasis’s meaningfulness and the understanding of this topic would benefit
from the elaboration of more sophisticated metrics.

5 Appendix: embedding algorithms

5.1 Tutte embedding

Let G denote the graph structure on C induced by the triangular mesh (not by
the population-averaged connectome). The Tutte embedding [9] of C is defined
by the following rules:

1. The points on the interhemispheric barrier are mapped in an appropriate
order to the boundary of the regular unit polygon centred in the origin.

2. Each point not on the boundary is mapped to the barycentre of its neigh-
bours.

An ad hoc way of determining the 243 points that make up the interhemispheric
boundary is by finding the largest connected component of the subgraph of ver-
tices of degree 5 and less. The Tutte embedding can then be computed by solving
two sparse linear systems (one for each dimension of the unit disc) involving the
Laplacian matrix A of G. Theoretical properties of this embedding, such as a
sufficient condition for planarity, are discussed in [9]. We make no effort to verify
this condition in our case as the resulting embedding is manifestly planar.

5.2 Spring embedding

It is shown in [9] that the Tutte embedding is the equilibrium state of the physical
system given by attaching springs (with some fixed spring constant k and free
length ¢ = 0) along each edge of the graph, while “pinning” the interhemispheric
boundary to the boundary of the unit polygon. By letting the free length ¢ be
positive one can promote uniformity in the unit disc and remove some of the
“clumps” that appear in the original embedding.

In this case, the equilibrium of the system cannot be obtained as the solution
of linear systems in the data, as is the case with the Tutte embedding. Instead,
one must numerically integrate the system of spring forces. It is helpful to set
the initial values to the Tutte embedding to promote faster convergence. Setting
the springs’ free length to £ = 1/v/N, where N is the number of points in C,
produces satisfactory results.
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5.3 Radial regularisation

In a final attempt to promote uniformity in the unit disc, we supplement the
spring embedding with a subsequent radial regularisation step. The idea is to
traverse the embedding with a “sliding sector” and to uniformise the radii within
each sector while uniformising polar angles globally. This is described more pre-
cisely in the following pseudocode. In our application we set sliding sector size
parameter « to 0.3.

Algorithm 1 Radial regularisation

Require: Points x1,...,xy € R? sliding sector size parameter « € (0, 1]
Ensure: Radially regularised points y1,...,yn € R?

L w4+ (1/N) N x; {Barycentre}

2: ¢ < argminly, [|x; — p|| {Centre point}

3: n « |a- N| {Size of sliding sector}

4: (r;,0;) « polar(x; — ¢) for i = 1,..., N {Convert to polar coordinates}
5: ¢ < arg sortl, (6;) {Sort by angle}

6: 7 1oy forj=1,...,N

7: for k=1to N do

8 0 «+ 2nk/(N — 1) {Uniformised angle}

9: if r;, =0 then

10: 7+ 0

11:  else

12: p = #{7 € [n] [ {7l |n/2)+j) moa v < 7} {Radius rank within sector}
13: 7' < y/p/n {Uniformised radius in (0,1]}

14:  end if R R

15: Yo < 7 - (cos(d'),sin(0"))

16: end for

17: return yi,...,yn~

Code availability. The code needed to replicate this study is made available in the
form of an online repository accessible through the following persistent object identifier:
https://doi.org/10.5281/zenodo.15748862.
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