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Abstract. Common prototype-based medical image few-shot segmen-
tation (FSS) methods model foreground and background classes using
class-specific prototypes. However, given the high variability of the back-
ground, a more promising direction is to focus solely on foreground mod-
eling, treating the background as an anomaly—an approach introduced
by ADNet. Yet, ADNet faces three key limitations: dependence on a
single prototype per class, a focus on binary classification, and fixed
thresholds that fail to adapt to patient and organ variability. To ad-
dress these shortcomings, we propose the Tied Prototype Model (TPM),
a principled reformulation of ADNet with tied prototype locations for
foreground and background distributions. Building on its probabilistic
foundation, TPM naturally extends to multiple prototypes and multi-
class segmentation while effectively separating non-typical background
features. Notably, both extensions lead to improved segmentation ac-
curacy. Finally, we leverage naturally occurring class priors to define
an ideal target for adaptive thresholds, boosting segmentation perfor-
mance. Taken together, TPM provides a fresh perspective on prototype-
based FSS for medical image segmentation. The code can be found at
https://github.com/hjk92g/TPM-FSS.

Keywords: Few-Shot Segmentation · Medical Image Segmentation ·
Multi-Class Segmentation · Prototype Model

1 Introduction

Medical image segmentation is a critical component of numerous clinical appli-
cations such as diagnostics [19] and treatment planning [3]. While supervised
deep learning approaches can achieve good performance, their applications are
constrained by the limited availability of annotated medical images. To address
this, few-shot segmentation (FSS) approaches have been proposed to effectively
adapt models trained with labeled datasets to new, previously unseen, classes.

The dominant FSS approach employs prototype networks [16], first intro-
duced by PANet [21], where each class is represented by a single prototype
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obtained through mean average pooling (MAP). Recognizing the limitation of
a single prototype in modeling rich feature variants, PPNet [11] proposed using
multiple prototypes for each class to improve expressiveness. More recently, there
has been growing interest in leveraging self-supervised learning (SSL) to circum-
vent the need for labeled medical data altogether. ALPNet [13] pioneered the
use of SSL by using pseudo-labels generated from superpixels, with additional
local prototypes aiding intra-class local information. However, the background
class typically exhibits significant heterogeneity, making it difficult to model
using a fixed number of prototypes. Recognizing this, ADNet [6] employs an
anomaly-detection-inspired approach, focusing on modeling the foreground pro-
totype while treating the background as anomalous and separating regions via
inside-outside (IO) classification. It assigns anomaly scores to each spatial loca-
tion, using a fixed threshold at inference for segmentation. This simple method
has demonstrated greater robustness to background heterogeneity relative to
ALPNet and has been successfully used for the detection of brain tumors [1],
ischemic stroke lesions [18], and lung lesions [17].

However, ADNet model [6] has three main drawbacks. First, its reliance on a
single foreground prototype limits the expressiveness of the foreground class
in medical images with significant intra-class variation. While non-anomaly-
detection multi-prototype methods exist [13,5], they struggle to capture the full
diversity of the background class. Meanwhile, existing anomaly-detection-based
multi-prototype variants [14,25,23,26] of ADNet involve cumbersome modifica-
tions such as the introduction of new layers or hyperparameters. Hence, it is
desirable for a more grounded yet simple approach that efficiently leverages
multiple foreground prototypes at the feature level. Second, ADNet is limited
to binary classification settings. While ADNet++ [7] extends it to multi-class
classification, it only adapts the inference phase and thus does not effectively
model the class relationships in training. Finally, ADNet’s fixed threshold is in-
sufficient to accommodate the inherent variability across patients and organs in
diverse applications. While adaptive thresholds have been proposed to address
this by utilizing support features [4], query information [15], or both [24], their
threshold values are learned through cross-entropy-based losses, which may not
necessarily optimize segmentation accuracy as further discussed in Sec. 3.4.

To address these issues, we take a step back and propose the Tied Proto-
type Model (TPM), a principled reformulation of ADNet [6] that leverages tied
(shared) prototype locations for foreground and background distributions. As
visualized in Fig. 1, the distributional foundation of TPM allows for its natural
extension to both multiple prototypes and multi-class classification settings while
retaining its simplicity and ability to separate non-typical background features.
In particular, we propose a Gaussian mixture model (GMM)-based approach
for multi-prototype segmentation, demonstrating its effectiveness in improving
segmentation accuracy. Moreover, we introduce multi-foreground training for
multi-class segmentation and show that it consistently offers superior represen-
tation learning capability. Lastly, by employing naturally occurring class priors
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Fig. 1: (a) TPM class distributions. The (first) foreground class probability
p(F |x), based on (b) the standard prototype model, (c) TPM with a single pro-
totype (SP), similar to the ADNet [6]—which is limited to spherical space, (d)
TPM with multiple prototypes (MP), and (e) TPM for multi-class (MC) classifi-
cation. For (b)–(e), the xy-axis shows the 2D Euclidean feature space positions,
and the points denote prototypes. Dashed lines indicate decision boundaries for
the shown (black) and the other (gray) foreground classes. Compared to stan-
dard prototype models, all TPM models achieve IO separation.

and feature distance distributions, we provide an ideal threshold estimation ap-
proach, aiming to enhance segmentation accuracy.

2 Preliminaries

2.1 Self-Supervised Few-Shot Learning Problem Setting

We adopt the self-supervised few-shot learning from [6], where pseudo-labels for
unlabeled volumes are generated by performing supervoxel segmentation and
randomly sampling a supervoxel as the foreground. Two 2D slices with the
supervoxel are then selected to serve as support and query images, with one
being augmented. The support image Xs and its pseudo-label Ys, where Ys

c

denotes the mask of class c, guide the segmentation of the query image Xq, all
of size (H,W ). A feature extractor network fθ encodes images into feature maps
Fs = fθ(X

s) and Fq = fθ(X
q), with spatial dimensions (H ′,W ′) and feature

dimension d. The upsampled predicted query label Ŷq is then compared to label
Yq, training the network fθ with a cross-entropy-based segmentation loss.

2.2 Anomaly Detection-Inspired Few-Shot Segmentation

In ADNet [6], the foreground prototype p is computed by upsampling the feature
maps to the original size and applying masked average pooling (MAP) as:

p =

∑
r F

s(r)⊙Ys
F (r)∑

r Y
s
F (r)

, (1)

with ⊙ as the Hadamard product, F the foreground class, and r the pixel loca-
tion. It defines the anomaly score S(r) = −α cos(Fq(r),p) for each query feature
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Fq(r), where α = 20 is a scaling factor following [12], and cos(·, ·) is the cosine
similarity. Then, ADNet estimates foreground class probability as:

p(F |Fq(r)) = 1− sig(S(r)− TS), (2)

where sig(·) is the sigmoid function with a steepness parameter κ = 0.5, and TS

is a learnable anomaly score threshold. This estimate is then upsampled and,
given the binary task focus, is combined with its complement to generate the
predicted label Ŷq.

3 Method

3.1 Tied Prototype Model

The tied prototype model (TPM), with our established equivalence to ADNet
[6] under a certain condition, adopts a probabilistic view of discriminative clas-
sification. This provides valuable insights for advancing few-shot medical image
segmentation while addressing ADNet’s limitations without modifying its archi-
tecture.

As illustrated in Fig. 1a, the key idea of our model is to use class distribu-
tions with a tied (shared) center position p for foreground and background classes
while differing in their dispersion parameters. This contrasts with standard clas-
sification, which uses distinct centers for different classes. Though counterintu-
itive, enforcing the same center for both foreground and background classes is
essential in separating the background class, as shown in Fig. 1c and Thm. 1.

TPM assumes that the foreground and background class distributions follow
multivariate normal distributions, N (p, σ2

F I) and N (p, σ2
BI), respectively. Here,

the tied prototype p serves as the location parameter, while σF and σB are class
standard deviations, with σF < σB . The symbol I denotes the identity matrix.
By applying Bayes’ theorem, the foreground class probability is given by:

p(F |Fq(r)) =
pFϕ(p, σF ; r)

pFϕ(p, σF ; r) + pBϕ(p, σB ; r)
=

1

1 + pB

pF

ϕ(p,σB ;r)
ϕ(p,σF ;r)

(3)

where pF and pB denote class priors and ϕ(p, σ; r) represents the normal distri-
bution density function with a mean p and covariance matrix σ2I. The choices
of priors are discussed in Sec. 3.4.

Fig. 1c visualizes the estimated class probability of TPM with a single pro-
totype, assigning higher probabilities to features closer to the prototype p while
giving lower values to those further from the prototype. This inside-outside (IO)
classification behavior highlights the model’s effectiveness in distinguishing typ-
ical features from diverse non-typical features, which is particularly useful for
foreground and background classification. As illustrated in Fig. 1b, this bene-
ficial IO separation property is absent in the standard prototype model, which
relies on distinct (non-tied) prototype positions and assigns class probabilities
along the direction of the prototypes’ difference.
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Theorem 1. In one foreground classification with a single prototype with a unit
spherical embedding Sd−1, the tied prototype model is equivalent to ADNet [6].

Proof. To establish equivalence, we must show that Eqs. (2) and (3) are identical
under a proper parameter correspondence. We first define TP(r) to simplify
Eq. (3) and replace the multiplication with the exponential function, yielding:

TP(r) =
1

1 + pB

pF

ϕ(p,σB ;r)
ϕ(p,σF ;r)

=
1

1 + exp
(
ln

(
ϕ(p,σB ;r)
ϕ(p,σF ;r)

)
+ ln

(
pB

pF

)) . (4)

By substituting the density function ϕ(·, ·) with its definition, we obtain:

TP(r) =
1

1 + exp
(

1
2 ∥Fq(r)− p∥2

(
1
σ2
F
− 1

σ2
B

)
+ d ln

(
σF

σB

)
+ ln

(
pB

pF

)) . (5)

We then set α = 2
(

1
σ2
F
− 1

σ2
B

)
and TS = 2 ln

(
pF

pB

)
− 2d ln

(
σF

σB

)
− α to obtain:

TP(r) =
1

1 + exp
(

1
2

((
1
2 ∥Fq(r)− p∥2 − 1

)
α− TS

)) . (6)

Since we use the unit spherical embedding Sd−1, embedding vectors Fq(r) and
p satisfy the equation 2−∥Fq(r)−p∥2

2 = cos(Fq(r),p), leading to:

TP(r) =
1

1 + exp
(
1
2 (−α cos(Fq(r),p)− TS)

) . (7)

Using the definitions of the anomaly score S(r) and the sigmoid function sig(·),
we can observe that Eq. (7) is equivalent to Eq. (2). □

Thm. 1 reveals that our TPM, under specific conditions, is a reparameterized
ADNet [6]. Unlike ADNet which inherently uses spherical embedding due to its
reliance on cosine similarity, our model can utilize other geometries. Furthermore,
it enables extensions beyond a single prototype as discussed below.

3.2 Binary Classification with Multiple Prototypes

Rooted in its distributional formulation, TPM naturally extends to multiple
prototypes modeled by Gaussian mixture models (GMMs). As illustrated in
Fig. 1d, this extension allows it to capture diversity in foreground features while
retaining the ability to distinguish non-typical background features.

To learn the GMM parameters from the foreground features, we apply the
EM algorithm from [22], but without enforcing equal mixture weights. This algo-
rithm alternates between the E-step and M-step, to extract multiple prototypes
pm along with their weights wm, satisfying

∑
wm = 1. When multiple proto-

types are obtained for the foreground class, we can simply use the same proto-
types for the background class as well. Specifically, GMM

∑
m wmϕ(pm, σF ; r)
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is used for the foreground class distribution, while the corresponding GMM∑
m wmϕ(pm, σB ; r) represents the background class distribution. Using Bayes’

theorem, the foreground class probability pMP(F |Fq(r)), estimated from multi-
ple prototypes and associated class priors, is given by:

pMP(F |Fq(r)) =

pF ;MP
∑
m

wmϕ(pm, σF ; r)

pF ;MP
∑
m

wmϕ(pm, σF ; r) + pB;MP
∑
m

wmϕ(pm, σB ; r)
. (8)

3.3 Multi-Class Classification

The distributional foundation of TPM allows for another expansion: multi-class
classification. While multiple prototypes can be used for each foreground class,
this work focuses on the simplified case of using a single prototype pFi

, obtained
by MAP in Eq. (1), for foreground class Fi. Fig. 1e visualizes the class probability
p(F1|x) of the first foreground class with prototype pF1 = (0, 1). The model
effectively distinguishes features from other foreground classes while ensuring
the separation of non-typical background features.

With a similar assumption on class distributions as in Secs. 3.1 and 3.2, the
class probability pMC(Fi|Fq(r)) of foreground class Fi can be obtained as:

pMC(Fi|Fq(r)) =
pFiϕ(pFi , σF ; r)∑

i′ pFi′ϕ(pFi′ , σF ; r) +
∑

i′ pBϕ(pFi′ , σB ; r)
, (9)

where pFi
is the class prior of Fi. The background class probability can then be

computed as pMC(B|Fq(r)) = 1−
∑

i′ pMC(F
′
i |Fq(r)).

Ignoring the background class, i.e., when pB = 0, Eq. (9) corresponds to the
normalized softmax [20]. This suggests that the model enables training to sepa-
rate different foreground features into their respective prototype positions while
pushing background features away from the prototypes. This is not possible in
multi-class classification with ADNet++ [7], as its use of the max operation over
foreground classes inherently makes it a piecewise binary classification model.

3.4 Targeting the Ideal Threshold

The foreground-background imbalance is a critical challenge in few-shot medical
segmentation. While adaptive thresholds [15,4,24] attempt to tackle this with
cross-entropy (CE), as illustrated in Fig. 2, minimizing CE does not necessarily
yield the highest Dice score, showing that CE minimization does not directly op-
timize segmentation accuracy. Furthermore, using the ideal proportion—where
the predicted foreground pixel counts match the true counts—achieves a near-
optimal Dice score. Inspired by this and the significant performance gains ob-
served in [2], we propose ideal thresholds of training query images as targets
for learning adaptive thresholds. For brevity, we consider the single-prototype
binary classification setting, which readily extends to the other settings.

First, we compute the upsampled Euclidean distance between features and
prototypes. We then calculate the ideal distance threshold (IDT) T ∗

D for each
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Fig. 2: (a) Distributions of distances to a prototype for Gaussian samples pro-
jected onto a sphere. Dice score (orange) vs. CE (blue) for (b) varying distance
threshold TD and (c) varying foreground class prior pF . Dashed lines indicate
values for the ideal threshold (black) and the CE-minimizing threshold (gray).

training query image. Mathematically, T ∗
D =

D;sort|F |+D;sort|F |+1

2 , where D;sort
is a vector of distances sorted in ascending order and |F | is the foreground pixel
count. By leveraging sorted distances, IDT ensures the number of predicted
foreground pixels matches the true count |F |. To employ Eq. (3), we convert IDT
into the corresponding ideal class prior (ICP) as p∗F = 1−sig(−T ∗2

D

(
1
σ2
F
− 1

σ2
B

)
−

2d ln(σF

σB
)). Replacing pF and the background prior with ICP p∗F , in Eq. (3), shifts

its decision boundary distance to IDT T ∗
D.

4 Experiments

4.1 Setup

Dataset. Two public abdominal datasets are used for evaluation: ABD-MRI and
ABD-CT. ABD-MRI [9] consists of 20 abdominal MRI scans with annotations
for the liver, left kidney (L.K.), right kidney (R.K.), and spleen (Spl.). ABD-
CT [10] contains 30 abdominal CT scans with the same organ annotations as
ABD-MRI. For supervoxel generation, based on [6,7], we set the size parameter
to 5000 for ABD-MRI and 2000 for ABD-CT.

Implementation Details. Following [6] for the binary-class and [7] for the
multi-class setting, we conduct experiments using 5-fold cross-validation, per-
forming three training runs per split, and leverage a single support image slice
to segment the entire query volume and measure the mean Dice score. We initial-
ize the feature extractor fθ with a pre-trained ResNet-101 [8], using randomly
transformed and reshaped 256×256 images, and optimize for 50k iterations using
SGD with a learning rate of 10−3. Features are 256-dimensional and normalized
onto a spherical embedding, with d = 1 for simplicity. We run experiments in
PyTorch (v1.9.0) on an NVIDIA RTX 3090 GPU.

Training and Threshold Options. To showcase the effectiveness of our
approaches, we compare results across various options. For binary segmentation,
we assess single-prototype-trained models using both single- and five-prototype
evaluations. The baseline is standard ADNet [6], trained with the additional T
loss, which regularizes TS . In contrast, our TPM training excludes the T loss
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Table 1: Binary segmentation. Best result in bold, second-best underlined. *
denotes our contributions and OCP is the oracle result using test labels.

Proto. Inference ABD-MRI [9] ABD-CT [10]
Liver L.K. R.K. Spl. Mean Liver L.K. R.K. Spl. Mean

Single

ADNet[6] 74.86 59.41 84.27 59.54 69.52 56.18 34.82 37.56 49.14 44.42
CE-T* 75.31 56.91 78.87 56.93 67.00 71.76 29.27 28.99 46.90 44.23
AvgEst* 69.94 70.38 85.99 69.40 73.93 33.36 39.42 41.49 56.47 42.68
LinEst* 73.98 71.23 85.64 69.11 74.99 65.34 38.92 40.88 58.49 50.91
OCP 85.71 87.19 89.47 81.05 85.85 81.01 65.65 67.34 76.15 72.54

Multi
(5)

CE-T* 74.85 54.92 77.60 56.75 66.03 75.50 28.48 28.79 46.06 44.71
AvgEst* 73.60 68.08 85.82 69.65 74.29 46.26 39.97 40.49 58.71 46.36
LinEst* 74.83 70.18 85.61 70.18 75.20 70.40 40.08 41.40 58.96 52.71
OCP 85.39 86.00 89.00 81.04 85.36 82.96 64.14 66.00 76.14 72.31

and only optimizes the segmentation loss, as our proposed estimation schemes
provide more principled thresholds. To assess the impact of aligning predicted
and true pixel counts, we report TPM results using the CE-trained threshold
(CE-T), estimated ideal class prior (ICP) values from training data—specifically,
the average estimation (AvgEst) and a linear estimation (LinEst), with the latter
based on the support foreground size |F | and query slice location—as well as the
oracle ideal class prior (OCP) for test queries. For multi-class segmentation, we
compare results from single- and five-foreground training, using ADNet++ [7]
as the baseline. While it is possible to consider each class count separately, we
report LinEst estimated by matching the sum of all foreground class counts.

4.2 Results

Table 1 presents the binary segmentation results, confirming the merits of the
ICP and multi-prototype (MP) approaches. In the single-prototype (SP) set-
ting, while ADNet [6] tends to outperform CE-T (ADNet equivalent without
T loss), AvgEst generally yields higher Dice scores than ADNet, except for the
liver class, which has a relatively large foreground size. Moreover, LinEst further
improves performance by incorporating size information, revealing ICP’s benefit
in this setting. The notably higher Dice scores of the OCP, which leverages or-
acle information, suggest significant room for improvement with advanced ICP
estimation. Compared to SP predictions, the proposed MP extension further en-
hances the performance of the estimated ICPs. Table 2 presents the results for
TPM’s multi-class segmentation extension, demonstrating the efficacy of ICP
and multi-foreground (MF) training. Focusing on single foreground (SF) train-
ing, TPM with estimated ICPs significantly outperforms the ADNet++ baseline
[7]. Furthermore, MF consistently enhances TPM’s performance over SF. This
highlights the superior representation learning capability of the proposed exten-
sion of our TPM.
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Table 2: Multi-class segmentation. * denotes our contributions.

Train Inference ABD-MRI [9] ABD-CT [10]
Liver L.K. R.K. Spl. Mean Liver L.K. R.K. Spl. Mean

SF ADNet++[7] 64.13 54.62 59.86 41.36 54.99 65.58 20.67 16.66 19.59 30.63
LinEst* 65.50 69.43 70.72 47.15 63.20 61.97 31.77 24.46 29.15 36.84

MF
(5)

ADNet++[7] 57.22 45.85 54.57 29.93 46.89 61.14 15.43 12.00 12.88 25.36
LinEst* 71.91 71.00 73.85 49.94 66.67 66.84 37.90 27.55 28.95 40.31

5 Conclusion

In this work, we introduce the tied prototype model (TPM), a probabilistic re-
formulation of ADNet [6] that advances its capabilities. Notably, TPM enables
seamless extensions to multi-prototype and multi-class segmentation. Further-
more, we highlight the significance of ideal thresholds as target thresholds. Our
experimental results demonstrate the performance improvements of each compo-
nent, paving new research directions in prototype-based few-shot segmentation.
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