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Abstract. Multi-sequence magnetic resonance imaging (MRI) faces crit-
ical challenges in balancing accelerated acquisition and image quality:
Rapid scanning typically induces degradation, including resolution re-
duction, increased noise, motion artifacts, and image blurring. While ex-
isting image enhancement models partially mitigate these issues, they of-
ten exhibit insufficient exploitation of complementary information across
multi-sequence data. To address this issue, we propose an interpretable
deep learning framework, FDF-VQVAE, for MRI image enhancement
through frequency-domain feature disentanglement and fusion. Our frame-
work constructs a dual-branch frequency-domain disentanglement mod-
ule (DBFD) that precisely decouples high-frequency and low-frequency
features of different sequences through parallel high-frequency feature
and low-frequency feature extraction pathways. The multi-frequency-
domian feature weighting mechanism (MFDFW) adaptively fuses the
high and low frequency features of different sequences. Finally, feature
recombination and decoding achieve MRI enhancement through joint
optimization. We conducted denoising, super-resolution, and deblurring
experiments on the IXI dataset (546 subjects) with external validation
on the BraTS2021 dataset (357 subjects). Experimental results demon-
strate that our method significantly outperforms the state-of-the-art
approaches in denoising, motion artifact removal, and super-resolution
tasks. Our code is available at https://github.com/kkllxh/FDF-VQVAE.
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1 Introduction

Multi-sequence magnetic resonance imaging (MRI) has become an indispensable
tool in clinical diagnosis, providing doctors with rich detailed tissue information
[3,11-13], and is widely used in disease diagnosis [12], lesion segmentation [13],
and treatment prognosis evaluation [2]. However, to improve scanning efficiency
and save time, it is often necessary to reduce image resolution or increase the
acceleration factor, which can lead to issues such as noise, motion artifacts, and
image blurring [6]. To address these problems, deep learning-based MRI image
enhancement techniques have gradually become an effective solution, attracting
widespread attention.

In recent years, numerous deep learning-based methods have been applied
to medical image enhancement [15, 6,19, 4]. However, these methods mainly fo-
cus on unimodal processing and fail to fully utilize the complementary infor-
mation between multi-sequence MRI. Although some methods have attempted
to leverage the complementary information across multi-sequence MRI, current
approaches still have fundamental limitations. For instance, Dalmaz et al. [5]
proposed a shared encoder architecture for multi-sequence feature extraction,
but their framework inadequately decouples sequence-specific features, resulting
in suboptimal feature discriminability. Furthermore, other methods [9,20] em-
ploying independent encoders for individual sequence feature extraction often
struggle to effectively capture inter-sequence shared representations. The in-
ability to concurrently learn sequence-specific distinctiveness and cross-sequence
commonality significantly constrains their practical efficacy. To improve MRI
image enhancement performance, it is crucial to effectively decouple and fuse
this complementary information.

MRI images can be decoupled into high-frequency and low-frequency features
[14,18]. The low-frequency features contain shared information about anatomical
structures (such as organ morphology and tissue distribution), while the high-
frequency features capture complementary information (such as texture details
and edge features). Therefore, we propose an interpretable deep learning frame-
work that can adaptively decouple and fuse high-frequency and low-frequency
features from different MRI sequences, further synthesizing enhanced images.
Our contributions can be summarized as follows: (1) We propose an interpretable
network architecture capable of decoupling and multi-frequency-domian feature
weighting mechanism (MFDFW) of high-frequency and low-frequency features
from different sequences while quantifying the contribution of high-frequency
and low-frequency features in each sequence. (2) We design a wavelet transform
decoupling loss that guides the model to effectively decouple high-frequency and
low-frequency features, thereby enhancing the feature extraction process. (3)
We propose a dual-branch frequency-domain disentanglement module (DBFD)
that better decouples high-frequency and low-frequency features from different
sequences. (4) We validate the model through tasks such as super-resolution,
denoising, and motion artifact removal, demonstrating its generalization ability
on external datasets.
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Fig. 1. The overview of the FDF-VQVAE framework.

2 Method

2.1 Frequency Disentanglement and Fusion Learning Framework

Figure 1 illustrates the overall architecture of the proposed FDF-VQVAE net-
work. The network mainly consists of an encoder E, a dual-branch frequency-
domain disentanglement module, multi-frequency-domian feature weighting mech-
anism, and a decoder G. The decoder G is composed of two hyper ConvNeXt
blocks, a hyper convolution layer, and LeakyReLU. First, the input MRI se-
quence is processed by the encoder E to extract shallow features. Then, the dual-
branch frequency-domain disentanglement module decouples the high-frequency
and low-frequency features of all input sequences based on c,¢q. Next, the weights
for the high and low frequency features are generated through cg,.. to enable the
effective fusion of multi-sequence features. Finally, the fused features Z. are
transformed into quantized features Z, using vector quantization [16], which are
then passed to the decoder G along with ¢4 to generate the target sequence. In
addition, in this network, c is composed of ¢ and cig;.

Dual-Branch Frequency-Domain Disentanglement Module Define a set
of N sequences MRI images with its corresponding simulated degraded image
IT={Y,X;|i=1,...,N}, where X; = F4(Y;). Fq represents the degradation
function. We propose a dual-branch frequency-domain feature disentanglement
module to extract high and low-frequency features fyi, fii = DBFD(X;, cseq), as
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shown in Figure 1(b). Here, ¢seq represents the one-hot encoding of the sequence.
The module consists of an Encoder, a hyper Restormer block, and a hyper dense
block. The hyper Restormer module [17], where hyper convolutions [7] replace
standard convolutions, is used to extract global features from MRI images. The
hyper dense module [21], similarly using hyper convolutions instead of standard
convolutions, is designed to extract local features from MRI images. This enables
targeted disentangling for different MRI sequences. The encoder consists of two
ConvNeXt blocks, a convolutional layer, LayerNorm, and LeakyReLU, aimed
at extracting more complex high-dimensional features while ensuring computa-
tional efficiency, thereby enhancing feature representation ability.

Multi-frequency-domian Feature Weighting Mechanism The low-frequency
features represent shared information, while the high-frequency features repre-
sent complementary information. Therefore, we integrate the low-frequency fea-
tures using a weighted sum and the high-frequency features using weighted con-
catenation, followed by further fusion of the integrated high and low-frequency
information. To enable the model to learn the optimal weights, we define a learn-
able parameter to predict the best weights w; € RY from cgye.

w; = sigmoid(cge - w +b) +¢, i € {low, high} (1)

where w and b are the weights and biases of the fully connected layer. e = 1075
to avoid dividing 0. To simulate modality missing, during training, we randomly
set cgpe to 0 in the MEDFW mechanism and ensure that the output w; sums to
1.

Wi * Csrc

N
Zj:l wij + €
where - refers to the element-wise product, j represents the j* weight in w;, N
is the number of w;, € = 10~° prevent the denominator from being zero.

By using the Dual-Branch Frequency-Domain Disentanglement Module and

the high-frequency and low-frequency weights wy and wj, the weighted fusion of
high-frequency and low-frequency features from multiple sequences is achieved.

, 1 € {low, high} (2)

W; =

frn = [wn1 - fri,wn2 - fr2,whs - frs)

N
fi :Zwli'fli (3)
i1

f=1fn fil
where f3; and f;; represent the high-frequency and low-frequency features of the
i-th input sequence, respectively. [, -] presents channel-wise concatenation.

2.2 Loss Function

Wavelet Transform Decoupling Loss To better decouple high-frequency
and low-frequency information, we propose a wavelet transform decoupling loss.
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First, we introduce a low-frequency consistency loss L., to enforce the con-
sistency of the low-frequency features extracted from different sequences. using
wavelet constraint loss Lyq to guide model to futher decouple the high and low-
frequency information, we use the wavelet-transformed high and low-frequency
images Y,; and Y}; of the original image to supervise the extracted features fy;
and fj;. We remap the decoupled features back to the image space and apply
pixel-level loss for constraint. Wavelet transform decoupling loss consists of Leop
and Lyq.

»Ccon(ivj) = Hfh - fl]”g (4)

where fj; and fj; represent the low-frequency features extracted from the differ-
ent input sequences.

Lwa(fiir Yiis frir Yni) = Lrec(1(f1i), Yii) + Lrec(Dni(fri)s Yni) (5)

where ¢; denotes the shared weight projection for low-frequency features, and
on; denotes the private weight projection for high-frequency features. The re-
construction loss, L., consists of the mean squared error (MSE) and structure
similarity index measure (SSIM) loss.

Image Reconstruction Loss To improve the enhancement effect, we impose
constraints on the generated images at the image level, structural level, and
semantic level. Y represents the model’s output image.

Loixet(V,Y) =Lyse (Y, Y) 4 Lsstu (Y, V) + Lrap(V,Y)

A (6)
+ »Cper(yv Y) + qu(ze7 Zq)

Here, Lyisg denotes the MSE loss, Lggmu denotes the SSIM loss, L1,,p denotes the
Laplacian loss, Ly denotes the perceptual loss based on a pre-trained VGG19
network, and L, denotes the commitment loss and vector quantization loss [16].

Total Loss The loss function combines image reconstruction loss, wavelet trans-
form decoupling loss, and low-frequency consistency loss to constrain the net-
work. The implementation is as follows:

N N N

ETotal :Epixcl(Y; Y) + Z Ewd(flia )/li; fhi; th) + Z Z Econ(iv .7) (7)
i=1 i=1j=1
J#i

3 Experiments

3.1 Experimental Settings

Dataset and Evaluation Metrics We conducted a study using brain MRI
images from 568 subjects in the IXI dataset [10], which included three aligned se-
quences: T1, T2, and proton density(PD). We selected 340 subjects for training,
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57 for validation, and 171 for testing. Additionally, we used brain MRI images
from 357 subjects in the BraTS2021 dataset [1] for external validation, which
included T1 and T2 sequences. All MRI images underwent intensity normaliza-
tion, with the intensity range standardized to [0, 1]. We simulated different low-
quality images in the following ways: for the super-resolution task, we reduced
the MRI image quality by applying 8x Fast Fourier Transform(FFT) undersam-
pling to simulate low-resolution images; for the denoising task, gaussian noise
with a mean of 0 and a standard deviation of 1 was added to the MRI images to
simulate real-world noise interference; for motion artifact generation, we applied
6x cartesian acceleration undersampling to simulate image distortions caused
by motion. To evaluate the synthesis performance, we used three common per-
formance metrics: peak signal-to-noise ratio (PSNR), structure similarity index
measure (SSIM), and learned perceptual image patch similarity (LPIPS). Using
these three metrics, we conducted a comprehensive evaluation of the synthesized
images from the perspectives of intensity, structure, and perception.

3.2 Implementation Details

The models are implemented with PyTorch and trained on the NVIDIA A40
GPU. The E and G are trained using the AdamW optimizer with an initial
learning rate of 0.0001, betas = (0.9, 0.95), weight decay = 0.05, a batch size of
1, for 500 epochs.

Target Input Prpposed

Super
Resolution

Denoising

Motion
Artifact
Removal

Fig. 2. The synthesized results of PD, T1, and T2 for our model and the comparison
model in the tasks of super-resolution, denoising, and motion artifact removal.

3.3 Experimetal Results

Comparative Experiment We compared the proposed method with multi-
sequence models (ResVit[5], TSF-seq2seq|8]) and single-sequence models (AST[19],
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Fig. 3. (a) The visualization of high and low frequency features. (b) The CC between
high-frequency features and the CC between low-frequency features in the three tasks.

Table 1. The results of super-resolution, denoising, and motion artifact removal on
the IXI dataset and BraTS2021 dataset.

Dataset IXI Dataset BraTS2021 dataset(External Validation)

Task name  Methods SSIM +  PSNR (dB) + LPIPS | SSIM +  PSNR (dB) + LPIPS | Parameters (M) GFLOPs (G)
Our Model 0.972+0.01 32.5+1.8 0.03940.010.963+0.01 31.2+1.4 0.060 4 0.02 0.3 157.2
TSF-Seq2Seq 0.967 £0.01  31.6 £ 1.7 0.046 +0.04 0.948 £0.02 25.3+2.4  0.090 +0.03 7.3 67.1
SR AST 0.954+£0.01 31.3+1.7 0.1124+0.030.9494+0.01 308+ 1.7 0.145£0.04 47.7 189.0
AdalR 0.9574+0.01 31.14+21 0.1174+0.050.9334+0.02 30.8+1.2 0.093 £0.02 28.7 344.9
ResVit  0.9694+0.01 31.6+£2.0 0.076+0.030.9474+0.01 26.6+1.6 0.106 £ 0.03 11.3 167.6
Our Model 0.975+0.01 33.9+1.1 0.0284+0.010.972+0.01 32.4+1.1 0.049 4 0.02 0.3 157.2
TSF-Seq2Seq 0.971 £0.01  33.4+1.3 0.0424+0.01 0.953 £0.01 27.0£2.7 0.085+0.03 7.3 67.1
Denoising AST 0.9424+0.01 32.6+0.8 0.052+0.010.910+£0.01 32.14+0.7 0.067 £ 0.01 47.7 189.0
AdalR  0.951£0.01 32.14+1.0 0.050+0.010.903+0.01 31.4+0.6 0.067 £0.02 28.7 344.9
ResVit  0.9724+0.01 33.4+1.3 0.042+0.01 0.9634+0.01 30.8+1.9 0.083+0.02 11.3 167.6
Our Model 0.973+0.01 33.5+1.4 0.02640.010.970+0.01 32.1+1.2 0.04140.01 0.3 157.2
Motion TSF-Seq2Seq 0.964 +0.01 33.3+1.6 0.046 £0.03 0.940 £0.01 25.4+24  0.100 £ 0.03 7.3 67.1
artifact AST 0.954+0.01 31.2+1.2 0.06740.010.928+0.01 30.7+1.2 0.075+£0.01 477 189.0
removal AdalR 0.946£0.01 30.9+1.2 0.06840.010.926+0.02 30.9=+1.1 0.08240.02 28.7 344.9
ResVit ~ 0.966 £0.01 324£1.9 0.04740.020.962+0.01 31.24+1.2 0.060 £ 0.02 11.3 167.6

AdaIR[4]). Figure 2 shows the effect maps for super-resolution (SR), denoising,
and motion artifact removal (MAR). Table 1 summarizes the performance of
these models in these tasks. The proposed method outperforms all others, with
multi-sequence models showing better results than single-sequence models, high-
lighting the benefit of using complementary information from multiple sequences.
Our method uses only about 0.3 M parameters and around 157.2 GFLOPS of
computation, achieving a superior parameter—compute balance while maintain-
ing high performance.

Ablation Study To validate the rationality of each module in the model, we
conducted ablation experiments on wavelet transform decoupling loss, DBFD,
and MFDFW, with the results shown in Table 2. The wavelet transform de-
coupling loss effectively constrains the model’s performance in high and low
frequency feature extraction; the DBFD module effectively decouples high and
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Table 2. The results of the ablation experiments on the model conducted on the IXI
dataset.

Dataset IXI Dataset

Task name Luwd, Leon MEDFW DBFD ~ SSIM + PSNR (dB) + LPIPS |
Our Model v/ v v 0.9724£0.01 325+1.8 0.039 % 0.01
Our Model v v 0.958+0.02 293+1.6 0.067+0.02
SR Our Model v/ v 0.957+£0.01 298415 0.063+0.01
Our Model v v 0.936 £0.03 30.0+£1.7 0.079 % 0.02
Our Model v/ v v 0.975£0.01 339411 0.028+0.01
. Our Model v v 0.962+001 304415 0.049+0.01

Denoising

Our Model v v 0.963£0.01 31.04+1.9 0.043+0.01
Our Model v/ v 0.962+£0.01 30.84+1.0 0.051+0.01
Our Model v/ v v 0.973£0.01 335+14 0.026+0.01
Motion artifact « | Our Model v v 09554001 302415 0.048+0.01
otion artiiact removal o . Model v/ v 09594001 306415 0.046 +0.01
Our Model v/ v 0.956£0.01 30.04+1.3 0.052+0.01

low frequency features, enhancing the model’s performance; and the MFDFW
mechanism effectively fuses high and low frequency features across multiple se-
quences.

Visualization of Feature Extraction As shown in Figure 3, the visualization
of high and low frequency features and their correlation coefficients (CC) across
three tasks is presented. As shown in Figure 3, the model effectively extracts
both high and low frequency features in the MRI image.

Contribution of Low and High-Frequency Features In the SR task, the
low-frequency weight of the PD sequence (0.98) helps maintain the stability of
anatomical structures, while the low-frequency weight of the T1/T2 sequences
(0.01) mitigates information conflicts caused by inter-modality contrast differ-
ences. The high-frequency weight of the T2 sequence (0.58) enhances the texture
of lesion boundaries, the high-frequency weight of the T1 sequence (0.39) im-
proves the sharpness of the gray-white matter interface, and the high-frequency
weight of the PD sequence (0.03) effectively suppresses interference caused by low
signal-to-noise ratio. In the denoising task, the low-frequency weight of the T2 se-
quence (0.49) stabilizes pathological signals, the weight of the PD sequence (0.3)
performs brightness correction, and the low-frequency weight of the T1 sequence
(0.21) prevents the amplification of contrast noise. The high-frequency weight of
the T1 sequence (0.52) preserves the details of the gray-white matter structure,
the PD sequence (0.38) supplements anatomical texture, and the high-frequency
weight of the T2 sequence (0.1) supplements other details. In the MAR task,
regarding low-frequency weights, the PD sequence (0.53) is primarily used to
correct motion artifacts, the T1 sequence (0.26) assists in locating low-frequency
structures at the gray-white matter boundary, and the T2 sequence (0.21) sup-
plements the stability of fluid regions. In terms of high-frequency weights, the
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T2 sequence (0.49) helps to enhance true edges, the T1 sequence (0.46) aids
in identifying the direction of artifacts, and the PD sequence (0.05) suppresses
motion-related high-frequency noise.

External Validation We conducted an external validation of our model and
comparison models using the BraTS2021 dataset, which includes 357 subjects,
to explore the model’s generalization capability. Table 1 shows that the proposed
method outperforms all other models in every task, demonstrating superior per-
formance and excellent generalization ability.

3.4 Conclusion

In this study, we propose an interpretable network architecture designed to effec-
tively extract high-frequency and low-frequency features from different sequences
and adaptively adjust the fusion weights of these features according to specific
task requirements. Additionally, we introduce a wavelet transform decoupling
loss function to guide the model in extracting high-frequency and low-frequency
features from MRI images. This method is suitable for multi-sequence synthe-
sis tasks such as super-resolution reconstruction, denoising, and motion arti-
fact removal. Experimental results on the IXI and BraTS2021 datasets demon-
strate that our method effectively utilizes complementary information between
sequences, significantly outperforming existing state-of-the-art techniques.
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