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Abstract. Magnetoencephalogram (MEG) with high spatio-temporal
resolution plays a crucial role in the field of functional imaging. In-
corporating vector source modeling enables explicit estimation of triax-
ial current components, thereby mitigating reconstruction errors caused
by orientation bias in scalar leadfield approximations. This directional
precision enables accurate identification of epileptogenic zones and os-
cillatory network hubs, providing neurosurgeons with electrophysiolog-
ically validated targets. Vector beamformers, grounded in spatial fil-
tering theory, provide computationally efficient solutions for large-scale
sensor data and dynamic high-resolution analyses. However, a vector
source requires a vector beamformer whose performance degrades un-
der high noise, limited time samples, or strongly correlated sources due
to sample covariance matrix singularity. In this study, we propose a
vector Bayesian learning framework to enhance beamformer robustness
by addressing covariance matrix singularity. Specifically, we model the
vector source linear system with full positive-definite noise covariance
structures and employ data-driven Bayesian learning to refine the sam-
ple covariance matrix. By leveraging sparsity priors on source distribu-
tions and data-driven, our method improves spatial focusing and tempo-
ral reconstruction accuracy. We validated the approach using simulated
data across varying signal-to-noise ratios (SNR) and real 64-channel
optically pumped magnetometer (OPM)-MEG datasets under diverse
stimulus-evoked paradigms. Comparative evaluations demonstrate that
our Bayesian learning-based framework achieves 18. 03% higher AUC
compared to conventional beamformers while preserving millimeter-level
spatial precision, outperforming existing benchmarks in both spatial lo-
calization accuracy and dynamic reconstruction fidelity for neuroscience
and clinical applications. Our codes are publicly accessible at: https:
//github.com/gao815/VBNLBF.
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1 Introduction

Magnetoencephalography (MEG) offers unparalleled spatiotemporal resolution
for mapping neural dynamics and clinical diagnostics. The core advantage of
MEG compared to electroencephalography (EEG) and techniques such as func-
tional magnetic resonance imaging (fMRI) lies in its ability to directly capture
the vector properties (direction and strength) of neural currents. This enables
more precise localization in source reconstruction, overcoming the directional
ambiguity inherent in EEG (due to volume conductor effects) and indirect neu-
ral activity measurements of fMRI [1,2,3]. Despite these technological diver-
gences, both modalities fundamentally require precise neural source localization
for functional interpretation. This critical dependency underscores the impor-
tance of brain source imaging (BSI), which enables neural activity reconstruc-
tion and real-time neurofeedback synchronization essential for closed-loop neuro-
modulation therapies. However, the electromagnetic inverse problem’s inherent
ill-posedness, where infinite dipole configurations yield identical magnetic field
measurements - necessitates mathematical frameworks integrating neuroanatom-
ical constraints [4]. This challenge motivated the adaptation of beamforming
techniques from radar signal processing to BSI [5,7]. Through spatial filtering
principles, these methods selectively amplify target neural signals while sup-
pressing interference from noise sources.

Distributed models map brain activity via voxel-grid dipoles with directional
strength. Because the true direction of the source cannot be obtained, the scalar
leadfield cannot be accurately reconstructed. Cortically constrained scalar mod-
els typically fix dipole orientations perpendicular to the cortical surface, aligning
with pyramidal neuron geometry [8]. However, this assumption fails for subcor-
tical sources lacking laminar organization and dynamic scenarios involving ori-
entation shifts. Although vector-based models outperform scalar approaches in
neurophysiological fidelity, they triple parameter dimensionality compared with
case of fixed direction, intensifying the inverse problem’s ill-posedness, motivat-
ing beamformers that inherently estimate orientation vector via spatial covari-
ance analysis.

Beamforming techniques employ adaptive spatial filters to amplify target
signals while suppressing interference. The minimum variance distortionless re-
sponse (MVDR) beamformer [9] and anatomically constrained variants [10,11,12]
provide computational efficiency and millimeter spatial resolution, ideal for the
whole-brain vector source reconstruction. Notably, conventional beamformers
face two limitations (Fig. 1(a)): (1) Singularity in sample covariance matrices
under finite time samples or correlated sources, typically mitigated via diagonal
loading or projection schemes (e.g., synchronous abnormal discharge activity in
epilepsy [6] or event-related activity in primary sensory areas); (2) Covariance
estimation bias in low-signal noise ratio (SNR) regimes with limited samples, vi-
olating asymptotic consistency assumptions [11]. Furthermore, sparse Bayesian
frameworks [13,14,15] enhance non-adaptive methods like weighted minimum
norm estimation (wMNE) [16] through data-driven priors, yet suffer from sen-
sitivity loss in high-dimensional spaces, reconstructed images exhibit excessive



sparsity and computational inefficiency for real-time applications. A hybrid ap-
proach integrating data-driven methodologies with beamforming techniques may
serve as a promising strategy for achieving high-resolution neural source imaging.

To overcome these challenges, we propose VBNLBF: a vector Bayesian beam-
former with noise learning. Proposed method integrates three innovations: (1) Hi-
erarchical priors jointly regularizing source and noise spaces to estimate data co-
variance and enhance the noise robustness; (2) Grounded positive-definite noise
modeling to solve the singularity covariance problem of the correlated source;
(3) A convex update optimization enabling vector reconstruction. Evaluated on
synthetic benchmarks (-5-10 dB SNR) and 64-channel OPM-MEG data, this
method achieves 18. 03% higher AUC compared to conventional beamformers
while maintaining millimeter-level spatial precision. Critically, it resolves corre-
lated source pairs unmanageable by existing methods, establishing clinical-grade
localization accuracy.

2 Methods and Vectorized Interpretation

2.1 Bayesian modeling of source and positive definite noise model

MEG measurements and neural source activity admit a linear hierarchical pri-
ors representation: B = LS + ε, where B ∈ Rdb×dT denotes sensor signals
from db channels over dT time samples. The source matrix S ∈ R3ds×dT en-
codes 3D current distributions for ds neural sources, with each source si =
[sxi , s

y
i , s

z
i ]

T ∈ R3×dT representing vectorial dipole moments. Here, the leadfield
matrix L ∈ Rdb×3ds contains three orthogonal components Li = [Lx

i ,L
y
i ,L

z
i ]

per source, mapping cortical currents to sensor space. Additive noise ε ∈ Rdb×dT

exhibits temporal independence and identical distribution. Notably, Maxwell’s
quasi-static approximation renders MEG more sensitive to tangential than ra-
dial cortical sources, while the leadfield’s ill-conditioning amplifies radial noise
[4]. To ensure numerical stability, we applied rank projection to L during for-
ward model construction. Although our framework employs full 3D current
components for comprehensive vector source modeling, it remains compatible
with lower-dimensional configurations. As Fig. 1(b) illustrates, we formalize
the variable distribution relationship through a hierarchical Bayesian Gaussian

model derived from the general linear framework: p (B|S) =
dT∏
t=1
N (Lst,Σn),

p (S) =
dT∏
t=1
N (0,Σs) , and p (ε) =

dT∏
t=1
N (0,Σn) . The variables B, S, and

ε are temporally independent and identically distributed. Traditional diagonal
covariance assumptions Σi

s = diag
(
σ2
ix, σ

2
iy, σ

2
iz

)
enforce component-wise inde-

pendence, causing biased axial estimates. We instead propose a block-diagonal
structure: Σs = diag

(
Σs1 , · · · ,Σsds

)
, Σi

s ⪰ 0, where Σsi is a 3 × 3 pos-
itive semi-definite matrix modeling ellipsoidal covariation. The trace tr (Σsi)
regulates source strength, providing a differentiable foundation for optimization.



Fig. 1. The beamformer problem and matrix update methods in magnetoencephalog-
raphy source imaging, along with the VBNLBF algorithm process. a) Problem of es-
timating the data covariance matrix; b) VBNLBF algorithm flow; c) Vectorized inter-
pretation of different methods.

Adopting Bayesian learning [17], we reword BSI as marginal likelihood op-
timization: Θ = argmax

Θ
p (B|Σb) = argmax

Θ

∫
p (B|S,Σn) p (S|Σs) dS, where

Θ = {Σs,Σn} and Σb = LΣsL
T +Σn. Negative log-likelihood becomes:

F = log |Σb|+ tr
(
CbΣ

−1
b

)
, (1)

with Cb =
1
dT

BBT . The former enforces sparsity; the latter ensures fidelity.
Using convex geometry optimization [18,14,15], we develop a convex up-

date strategy to surpass Expectation Maximization (EM) algorithm limitations.
Updates alternate between Σs, Σn, and S̃, constrained to their respective
manifolds. Since log |Σb| is concave in Σsi , we introduce 3 × 3 auxiliary vari-
ables V i ≻ 0 to construct a convex upper bound [18]: F̃ = tr

(
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−1
b

)
+∑ds

i=1 tr
(
V T

i Σsi

)
+ v0, where v0 is a scalar intercept. Solving ∂F̃/∂Σsi = 0

yields:
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with Li denotes the i-th column vector of matrix L and Cs = 1
dT

S̃S̃
T
. Given

Σi
s ⪰ 0 and Σn ≻ 0, the minimum eigenvalue of Σb satisfies λmin(Σb) ≥

λmin(Σn) > 0, ensuring strict positive definiteness. Grounded noise covariance
updates on the symmetric positive-definite (PD) manifold [14] can effectively
solve the singularity of covariance matrix. Eq. 1 can be restated as:



F (Σn) = tr
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with Cn = 1
dT

(B −LS̃)(B −LS̃)T . In the same way, Σn updates are:
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Posterior expectation of S̃ updates as:

S̃ = ΣsL
TΣ−1

b B. (5)

Use Eq. (2) (4) (5) to alternately update variables until the change in less than
the objective function F is less than the set tolerance δ, and output the data
covariance Σb estimation for the current iteration as input to the beamformer.

2.2 Beamforming reconstruction

The vector beamformer [18] reconstructs source activity using the updated Σb.
For the i-th neural source, the spatial filter solution is derived as:

W i = Σ−1
b Li

(
LT

i Σ
−1
b Li

)−1

, (6)

yielding the estimated source activity Si and activation power P i:

Si = W T
i B, P i =

√
(Si,x)

2
+ (Si,y)

2
+ (Si,z)

2
. (7)

2.3 Vectorized interpretation

The performance limitations of beamformers originate from perturbations in-
duced by off-diagonal elements in Σb, formally expressed as [19]:

W T
i B = Strue

i +
∑
j ̸=i

Strue
j

(Σ−1
b )ij

(Σ−1
b )ii

, (8)

where the second term quantifies leakage contributions from correlated source co-
variance. Vectorization of Σb elucidates beamformer mechanisms [11]: vec(Σb) =∑ds

i=1 vec
(
LiL

T
i (Σs)ii

)
+

∑ds

i=1

∑
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(
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)
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partitioned into diagonal source terms (vec(f(Σdiag
s ))), off-diagonal coupling

terms (vec(f(Σoff−diag
s ))), and noise. Spatial sparsity priors enforce rank(Σs)≪

ds, with little sparse dominant diagonal entries (Σs)ii ≫ 0. As Fig. 1(c) il-
lustrates, Conventional diagonal loading [9], Σb ← Σb + λI, preserves Σdiag

s

structure under moderate SNR but requires careful λ tuning and fails to ad-
dress (Σ−1

b )ij effects. Advanced methods (e.g., ReciPSIICOS [11,19]) suppress
these terms via projections. Under low-SNR white noise, Σb retains full rank
but noise dominance biases diagonal ratios

(
Σclean

b

)
ii

/((
Σclean

b

)
ii
+ (Σn)ii

)
,



impairing noise suppression. Our Bayesian framework jointly learns Σn (posi-
tive definite) and Σdiag

s , eliminating vec(f(Σoff−diag
s )) interference to enhance

robustness against correlated sources and noise.

3 Experiment

To evaluate the proposed method, we compared VBNLBF against three bench-
mark categories: (1) Norm-constrained methods: weighted minimum norm es-
timate (wMNE) [16] and standardized low-resolution electromagnetic tomogra-
phy (sLORETA) [20]; (2) Covariance-optimized methods: regularized linear con-
strained minimum variance beamformer (LCMV) [8], Bayesian principal compo-
nent analysis beamformer (bPCA-LCMV) [10], and spatial projector ReciPSI-
ICOS [11]; (3) Bayesian frameworks: Champagne-NL [18] (accurate scalar lead-
field) and Bayesian learning beamformer (BLBF) [13] (single-axis scalar lead-
field). All methods employed normalized leadfields.

Fig. 2. Performance metrics of reconstruction algorithms in simulated source scenarios.
a) Evaluation metrics at different SNR; b) Source and waveform reconstruction under
SNR = 5dB. c) Noise covariance estimation under different noise types.



We simulated three neural sources using a 102-channel MEG single-shell head
model [21] with 8 mm grid resolution: two correlated bilateral temporal sources
(synchronized time courses) and one independent source. Neural mass models
(NMM) [22] generated activation waveforms with additive correlated noise (SNR:
-5-10 dB). Each configuration underwent 20 Monte Carlo trials. We evaluated: 1)
Spatial accuracy: Dipole localization error (DLE). 2) Reconstruction reliability:
Area under curve (AUC). 3) Temporal fidelity: Correlation coefficient (Corr).
Ground truth refers to the activation strength and location of the simulation
source setting under noise-free conditions. The calculation details for each eval-
uation index can be found in the supplementary file in github.

Simulations were conducted on a 13th Gen Intel Core i9-13900HX proces-
sor at 2.20 GHz. The inference process typically required 200–500 iterations to
converge, with a total runtime under ten minutes for the simulations presented
in this study. The primary computational bottleneck lies in covariance matrix
inversion operations, whose complexity increases with ds and db. Thus, the pro-
posed method is more suitable for high-precision offline analysis.

Table 1. Performance metrics of algorithm across noise configurations. (Mean±Std)

method AUC DLE(mm)
VBNLBF 0.9162±0.0233 2.9248±0.6218
CHAMP 0.8180±0.0114 4.3635±0.1981
LCMV 0.7511±0.0236 3.1487±0.3824
wMNE 0.6932±0.0099 4.0775±0.2144
sLORETA 0.7565±0.0082 5.7931±0.3148
BLBF 0.7925±0.0189 4.0977±0.6374
bPCALCMV 0.6885±0.0561 3.4005±0.3485
ReciPSIICOS 0.7695±0.0166 4.8694±0.7003

Under low SNR (SNR < 0 dB), VBNLBF achieved significantly higher AUC
(0.9089 ± 0.0260) and Corr (0.7603 ± 0.0488) than other methods, with compa-
rable DLE (Fig. 2(a)). Traditional LCMV and BLBF exhibited SNR-correlated
performance decline (e.g., LCMV Corr decreased from 0.4991 to 0.4081) due to
>70% amplitude attenuation in correlated sources. VBNLBF improved AUC by
18.03%, resolving correlated source confusion and noise sensitivity matching for
LCMV (1). In contrast, VBNLBF maintained low localization error within one
voxel (DLE < 4 mm) and reconstruct sources 1 and 2 wavelet amplitudes via
Bayesian hierarchical modeling compared with CHAMP’s oversparse solutions
under accurate lead direction (Fig. 2(b)), which also shows that the spatial fil-
ter built by beamforming improves the situation where the source is too sparse
due to Bayesian frame focusing. In addition, we evaluated VBNLBF under 5
dB mixed correlated noise and white noise. Under different noise environment,
VBNLBF algorithm can learn the intrinsic information of noise. Cosine simi-
larity analysis (Fig. 2(c)) corroborated this (ρmixed = 0.751, ρwhite = 0.967).
This highlights Bayesian full noise covariance structure learning’s adaptability,



though the positive definite covariance’s off-diagonal elements may introduce
minor Σ−1

b -based spatial weighting errors (Eq. 8), slightly degrading resolution
in positive definite noise covariance regimes with high SNR. Overall, the perfor-
mance of our algorithm is optimal in different noise environments and correlated
source configurations.

Fig. 3. Brain magnetoencephalographic source reconstruction and stimulation response
analysis based on OPM-MEG, with corresponding time series waveforms. a) Coregis-
tration result and OPM-MEG device; b) Source reconstruction imaging results; c) AAL
atlas partition [23] averaged activation waveforms.

Two kinds of validation experiment utilized 64-channel OPM-MEG record-
ings from three adults (24±2 years) in a magnetically shielded room (Fig. 3(a)).
Individual head models employed 8 mm MNI-standard source space coregistra-
tion with single-shell forward modeling [21]. For single trial eyes-closed visual
tasks (Fig. 3(b)), VBNLBF reconstructed alpha-band (8-13 Hz) bilateral occip-
ital activations under low SNR, with global field power analysis revealing signif-
icant activity in cuneus (Cuneus L/R) and superior occipital gyrus (Occipital-
Sup L/R) [23,24], exceeding 95% baseline confidence intervals. Peak activa-
tion (MNI:36 -88 24) localized to visual cortex [24,25]. In correlated auditory
paradigms (700 pure-tone stimuli), VBNLBF identified bilateral Heschl’s gyrus
activations (MNI:-44 -32 16), reconstructing correlated characteristic M50/M100
evoked components in temporal regions, consistent with established neurophys-
iological patterns [26,27].

4 Conclusion

While the VBNLBF introduces computational demands due to its rigorous co-
variance estimation framework — particularly the super-linear complexity scal-
ing with source space grid density, Accurate covariance estimation can resolve



performance limitations of conventional methods in low-SNR, correlated source,
and uncertain noise covariance regimes. By jointly optimizing block-diagonal
source covariance and positive-definite noise structures, our framework adap-
tively regularizes covariance degeneration while enhancing noise robustness. Ex-
perimental validation demonstrates that VBNLBF achieves an 18.03% improve-
ment in AUC compared to conventional LCMV, establishing this non-invasive
technique as a robust clinical solution for overcoming resolution limitations
in synchronous epileptogenic foci discrimination and guiding precise resection
surgery.
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