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Abstract. Despite the notable success of current Parameter-Efficient
Fine-Tuning (PEFT) methods across various domains, their effectiveness
on medical datasets falls short of expectations. This limitation arises from
two key factors: (1) medical images exhibit extensive anatomical varia-
tion and low contrast, necessitating a large receptive field to capture
critical features, and (2) existing PEFT methods do not explicitly ad-
dress the enhancement of receptive fields. To overcome these challenges,
we propose the Large Kernel Adapter (LKA), designed to expand the re-
ceptive field while maintaining parameter efficiency. The proposed LKA
consists of three key components: down-projection, channel-wise large
kernel convolution, and up-projection. Through extensive experiments
on various datasets and pre-trained models, we demonstrate that the
incorporation of a larger kernel size is pivotal in enhancing the adapta-
tion of pre-trained models for medical image analysis. Our proposed LKA
outperforms 11 commonly used PEFT methods, surpassing the state-of-
the-art by 3.5% in top-1 accuracy across five medical datasets. The code
is available at: https://github.com/misswayguy/LKA.

Keywords: Medical Image Classification · Parameter-Efficient Fine-
Tuning · Large Kernel Convolution.

1 Introduction

The pre-train fine-tune paradigm [1] has emerged as a powerful and effective
strategy, demonstrating significant success in the domain of medical image [2].
Under this strategy, pre-training is usually conducted on out-of-domain non-
medical images, followed by fine-tuning on in-domain medical images tailored to
the specific task. Significant progress has been achieved in pre-trained models,
with efforts focused on scaling these models to billions and even trillions of pa-
rameters [3]. The substantial size of large pre-trained models poses a considerable
computational burden for fine-tuning in downstream tasks.

* Equal contribution.
† Corresponding author: Tianjin Huang and Lu Liu (t.huang2,
l.liu3@exeter.ac.uk).

https://github.com/misswayguy/LKA


2 Z.Zhu and S.Lu, et al.

Various parameter-efficient fine-tuning methods (PEFT), such as prompt tun-
ing [4],adapters [5], and low-rank adaptation (LoRA) [6], have been developed to
address the fine-tuning challenge. LoRA reduces the number of trainable param-
eters by learning low-rank updates to the model’s weights, while adapters intro-
duce small, additional modules into the model that can be fine-tuned with min-
imal computational overhead. Prompt tuning optimizes input prompts to better
guide the model predictions without altering the core model parameters. These
PEFT methods mitigate computational burden associated with fine-tuning, en-
abling more efficient adaptation of large models to specific tasks. However, the
direct application of these PEFT methods for adapting large pre-trained mod-
els to medical imaging tasks may fall short of expectations due to two critical
factors: (1) The characteristics of medical images differ significantly from the
training corpora of large pre-trained models, which are typically based on non-
medical images. Medical images often exhibit extensive anatomical variation
and low contrast, making them challenging to analyze. Capturing these intricate
details effectively requires models with a large receptive field, as smaller recep-
tive fields may fail to fully capture the critical features necessary for accurate
interpretation [7]. (2) Existing PEFT methods including LoRA, adapters, and
prompt tuning, are not explicitly designed to capture information from large re-
ceptive fields. While these techniques are effective in reducing the computational
burden, they do not explicitly account for the need to capture extensive spa-
tial context, which is crucial for accurately interpreting the complex anatomical
structures and subtle variations inherent in medical images.
To address the aforementioned limitations, we begin by investigating the effec-
tiveness of expanding a large receptive field within the adapter framework via
the use of large kernel convolutions . Specifically, we employ a channel-wise large
kernel convolution [8] after the down-projection layer. Through a comprehensive
experimental analysis with varying kernel sizes with adapters, we find that larger
kernel convolutions are essential for effectively adapting large pre-trained mod-
els to medical imaging domain. Building on this insight, we introduce the Large
Kernel Adapter (LKA), which comprises a down-projection layer, an activation
layer, a channel-wise large kernel convolution layer, and an up-projection layer.
The proposed LKA can be easily integrated into popular architectures such as
Swin [9], ConvNeXt [10], ViT [11], and so on.
In summary, our main contributions are as follows:

⋆ We demonstrate that integrating large kernel convolution within adapters
significantly expands the effective receptive field (ERF), which is crucial for
adapting large pre-trained models to the medical imaging domain. Moreover,
our findings indicate that among various methods for expanding the ERF,
integrating large kernel convolutions is the most effective.

⋆ Leveraging large kernel convolution, we propose the LKA, which consists
of a down-projection, a channel-wise large kernel convolution, and an up-

We focus on adapters because prompt tuning and LoRA are not inherently compat-
ible with large kernel convolutions.
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projection. The channel-wise large kernel convolution is designed to expand
ERF, enhancing the ability to capture complex long-range spatial context.

⋆ Extensive experiments demonstrate that the proposed LKA achieves superior
performance across various pre-trained model backbones and sizes. Remark-
ably, compared to 11 other state-of-the-art PEFT methods, our LKA improves
the top-1 accuracy by 3.5% on five medical datasets.

⋆ Ablation studies find that an oversized kernel convolution may degrade per-
formance and that integrating the LKA adapter in parallel with the transfor-
mation block is more effective than sequential integrations.

2 LKA: Large Kernel Adapter

The current PEFT methods exhibit certain limitations when applied to adapting
large pre-trained models for medical imaging tasks, primarily due to their in-
sufficient consideration of large receptive fields, which are crucial for accurately
capturing the complex anatomical structures and subtle variations in medical
images [12,10]. To address this challenge, we propose the Large Kernel Adapter
(LKA). Structurally similar to the adapter [5], our LKA further introduces channel-
wise convolution with large kernel size to significantly enhance the model’s re-
ceptive field, as illustrated in Figure 1. In the LKA, the down-projection with
parameters Wdown ∈ Rd×d̂ and the up-projection with parameters Wup ∈ Rd̂×d

to limit the number of trainable parameters, where d̂ is the bottleneck with and
satisfies d̂ ≪ d. We introduced a large kernel convolution to expand the recep-
tive field and employed channel-wise convolution to ensure the efficiency. The
formula for our LKA can be expressed as:

LKA-Conv(x) = DWConvk×k(x) (1)

xLKA = Wup · (GeLU(LKA-Conv(Wdown · x)) + x, (2)

where LKA-Conv(·) denotes the channel-wise large kernel convolution for en-
hancing receptive field with kernel size k and GeLU(·) is the activation function
used in the LKA.

A key question surrounding LKA is its optimal placement within pretrained
models. Our empirical analysis, presented in Table 4, reveals that positioning
LKA in parallel with both the MSA and FFN modules (as illustrated in Fig-
ure 1) yields the best performance. Formally, the integration of LKA within the
Transformer block can be expressed as follows:

x∗
l = MSA(LN(xl−1)) + LKA(LN(xl−1)), (3)

xl = MLP(LN(x∗
l )) + LKA(LN(x∗

l )), (4)

where LKA(·) has been explained in the previous subsection.
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Fig. 1. The structures of Adapter(a) and LKA(b), full fine-tuning (c) and LKA-tuning
(d). During training, only LKAs are trainable, while all other layers remain frozen.

3 Experiments and Results

3.1 Experiment Settings

To demonstrate the effectiveness of our proposed LKA method, we conduct ex-
periments using 3 popular pre-trained models across 5 medical datasets and
report the the top-1 accuracy in all experiments. Additionally, we benchmark
our results against 11 PEFT methods to provide a comprehensive compari-
son. Datasets. We evaluate the LKA on five available medical datasets, which
are Blood cell dataset [17] which contains microscopic images of blood cells,
BUSI dataset [18] with 780 breast ultrasound images covering benign, malig-
nant, and normal cases, Brain tumor dataset [19] which is brain MRI images
across three tumor categories: glioma, meningioma, and pituitary tumor, Tu-
berculosis (TB) dataset [20] which features chest X-ray images labeled as TB-
positive or normal, and Covid-19 dataset[21]which comprises chest X-ray im-
ages from patients with Covid-19, pneumonia, and normal. For all datasets,
we follow an 80% training and 20% testing split. Pre-trained Models. The
proposed LKA is tested across various popular architectures, primarily Swin [9],
ConvNeXt [10], and ViT [11]. Implementation Details. During training, we
directly load the pre-trained weights from upstream tasks for the original net-
works and keep them frozen during the fine-tuning process. In contrast, for
our LKA, the weights are updated throughout the training. The epoch is set
to 100. The optimizer was AdamW with a cosine learning rate scheduler. Base-
lines. We compare our proposed method with other state-of-the-art methods. (I)
Traditional Fine-tuning: Linear probing [22], Full fine-tuning [23]; (II) Adapter-
tuning: Adapter [5], ST-Adapter [13], Convpass [16], CIAT [24], AIM [14], LOSS-
LESS ADAPTATION [25], RepAdapter [26], Adapterformer [27]; (III) Other
PEFT Methods: Bitfit [28], VPT [4], LoRA [6].
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Table 1. Test accuracy of LKA with varying kernel size among different pre-trained
models.

Pretrained
Models

Kernel
Size Cell BUSI Brain TB Covid Average

Swin-L [9]

None 0.914 0.843 0.920 0.987 0.937 0.920
3× 3 0.926 0.874 0.952 0.992 0.956 0.940
5× 5 0.940 0.890 0.960 0.995 0.960 0.949
7× 7 0.945 0.902 0.968 0.997 0.974 0.957

ConvNeXt-L [10]

None 0.882 0.865 0.912 0.980 0.911 0.910
3× 3 0.918 0.896 0.937 0.990 0.935 0.935
5× 5 0.928 0.902 0.945 0.994 0.952 0.944
7× 7 0.941 0.911 0.952 0.996 0.968 0.954

ViT-L [11]

None 0.779 0.803 0.896 0.944 0.894 0.863
3× 3 0.869 0.824 0.918 0.972 0.940 0.905
5× 5 0.880 0.856 0.927 0.980 0.949 0.918
7× 7 0.884 0.875 0.938 0.987 0.958 0.928

3.2 Results and Discussion

Large Kernel is Crucial for effectively Applying the Vanilla Adapter in
Medical Imaging. To demonstrate the critical role of large kernels in adapting
large pre-trained models for the medical imaging domain, We conduct a com-
parative analysis by testing LKA with varying kernel sizes, ranging from 3× 3 to
7 × 7. This evaluation is performed across three pre-trained architectures and
five medical datasets. Additionally, we provide a visualization of the effective
receptive fields (ERFs) corresponding to each kernel configuration.

❶ Integrating Large Kernel Convolution within Adapters Achieves
Better Performance. Table 1 presents the performance of various pre-trained
models—Swin-L [9], ConvNeXt-L [10], and ViT-L [11] on five medical datasets
fine-tuned by LKA with different kernel sizes as well as the vanilla adapter (in-
dicated as “None”). The results demonstrate that incorporating a convolution
within the adapter consistently enhances performance, with larger kernel sizes
yielding significantly better results than smaller ones. This trend holds across
different pre-trained models and various medical datasets. Notably, When using
a kernel size of 7 × 7, the LKA consistently outperforms the vanilla adapter by
an average margin of 4.9% across all datasets.

❷ Integrating Large Kernel Convolution within Adapters Expands
ERF. The concept of ERF is crucial in computer vision, particularly in under-
standing how neural networks process visual information [29]. Following [30,12],
we sample and resize 50 images from the validation set to 1024 × 1024, and
measure the contribution of each pixel on input images to the central point of
the feature map generated in the last layer. The contribution scores are further
accumulated and projected to a 1024× 1024 matrix. The visualization is shown
in Figure 2. We find that integrating an adapter with larger kernel convolutions
(i.e. LKA with larger kernel size) leads to an expanded ERF. This finding indi-
cates that the combination of an adapter and larger kernel convolutions enhances
the model’s ability to capture long-range spatial contextual information.
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Fig. 2. Effective receptive fields (ERFs) for LKA with various kernel sizes based on pre-
trained Swin-T.
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Fig. 3. Comparison of LKA and Vanilla Adapter with varying #Trainable Parameters
based on pre-trained Swin-T and two datasets: Covid (a) and BUSI (b).

❸ Large Kernel Matters Instead of #Trainable Parameters. When
increasing the kernel size in convolutional layers, it inevitably leads to an in-
crease in the number of trainable parameters. To substantiate our claim that
large kernel convolutions are critical for effectively adapting pre-trained models
in medical imaging, we conduct experiments using a vanilla adapter with an
enlarged bottleneck width and compare its performance with the LKA with vary-
ing kernel sizes. The results in Figure 3 demonstrate that increasing the kernel
size from 1× 1 to 7× 7 significantly improves accuracy across different datasets.
Specifically, in the Covid dataset, accuracy improves from 90.3% to 95.2%, while
in the BUSI dataset, the accuracy increases from 80.3% to 87.5%, despite only
a marginal increase in trainable parameters. These results highlight the greater
impact of kernel size over simply increasing trainable parameters, reinforcing the
effectiveness of large-kernel convolutions in medical image adaptation.

Achieving State-of-the-Art. To demonstrate the superiority of the LKA over
other PEFT methods, we compared LKA with the commonly used 11 PEFT meth-
ods based on pre-trained Swin-L model on the five medical datasets. The results
in Table 2 present that the LKA outperforms all 11 PEFT methods across all five
medical datasets. On average, our LKA approach achieves the 3.5% higher top-1
accuracy compared to these advanced PEFT methods. Notably, LKA even sur-
passes the results of full fine-tuning in most cases. The consistent superior perfor-
mance of LKA across multiple datasets underscores the effectiveness of leveraging
larger receptive fields to enhance top-1 accuracy in medical tasks.
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Table 2. Comparison of LKA with other baselines on five medical datasets based on pre-
trained Swin-L. Bold indicates the highest value achieved among the PEFT methods.

Kernel Size #Trainable
Parameters Cell BUSI Brain TB Covid Average

Full fine-tuning [23] 195M 0.953 0.894 0.967 0.995 0.974 0.957

Linear probing [22] 0.006M 0.857 0.871 0.822 0.939 0.934 0.885

Bitfit [28] 0.313M 0.924 0.881 0.920 0.993 0.946 0.933

Adapterformer [27] 0.320M 0.939 0.884 0.948 0.991 0.945 0.941

LOSSLESS ADAPTATION [25] 0.320M 0.924 0.887 0.952 0.991 0.948 0.940

ST-Adapter [13] 0.334M 0.777 0.713 0.867 0.933 0.833 0.825

RepAdapter [26] 0.486M 0.924 0.881 0.952 0.988 0.944 0.938

LoRA [6] 0.578M 0.940 0.887 0.952 0.993 0.943 0.943

Adapter [5] 0.633M 0.914 0.843 0.920 0.987 0.937 0.92

Convpass [16] 0.661M 0.921 0.884 0.933 0.993 0.955 0.937

AIM [14] 0.947M 0.849 0.845 0.877 0.972 0.937 0.896

CIAT [24] 0.966M 0.936 0.884 0.952 0.990 0.952 0.943

VPT [4] 1.052M 0.917 0.852 0.933 0.987 0.926 0.923

LKA(Ours) 0.652M 0.945 0.902 0.968 0.997 0.974 0.957

Table 3. Test accuracy of different kernel sizes
of the LKA based on pre-trained Swin-T.
Kernel
Size

#Trainable
Parameters Cell BUSI Brain TB Covid Average

3× 3 0.319M 0.875 0.844 0.900 0.987 0.919 0.905

5× 5 0.322M 0.880 0.870 0.936 0.990 0.935 0.922

7× 7 0.326M 0.885 0.876 0.944 0.992 0.952 0.930

9× 9 0.340M 0.870 0.863 0.933 0.951 0.936 0.918

11× 11 0.345M 0.865 0.860 0.933 0.989 0.936 0.918

31× 31 0.502M 0.870 0.861 0.933 0.985 0.929 0.916

Table 4. Test accuracy of various
integration positions for LKAs based
on pre-trained Swin-T.

Position Cell BUSI Brain TB Covid Average

(a) 0.885 0.876 0.944 0.992 0.952 0.930

(b) 0.877 0.861 0.933 0.986 0.932 0.919

(c) 0.882 0.870 0.933 0.989 0.937 0.922

3.3 Ablation Studies and Extra Analysis

Oversized Kernels May Hurt. The observation above indicates that inte-
grating large kernel convolution within adapter expands the Effective Receptive
Field (ERF), leading to improved performance. However, it remains an intrigu-
ing question whether using even larger kernel convolution could offer additional
benefits. Therefore, we conduct experiments with increasing kernel size to 31×31
based on the pre-trained Swin-T. The results in Table 3 indicate a kernel size is
7 × 7 achieve the best performance. The kernel size significantly affects model
performance, as small kernels fail to capture global information, while excessively
large kernels may miss key regions, both leading to suboptimal results.
Position Matters. Existing adapters [5,13,14] are commonly integrated into
Transformer blocks using a sequential approach, a method originally developed
for natural language processing. However, given the fundamental differences be-
tween vision and language domains, recent research has explored alternative
placement strategies. For example,[15,16] demonstrated that inserting adapters
solely after the feed-forward network (FFN) module can also be effective. Al-
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Table 5. Test accuracy of different enlarging receptive field recipes into the LKA based
on pre-trained Swin-T. “n” and “d” represent the number of convolutional layers and
the dilation rate in dilated convolution.

Method Cell BUSI Brain TB Covid Average
3× 3(n=3)/CW-Conv 0.880 0.865 0.933 0.990 0.950 0.924

3× 3(d=3)/D-Conv 0.883 0.873 0.933 0.991 0.950 0.926

7× 7/CW-Conv 0.885 0.876 0.944 0.992 0.952 0.930

Table 6. Test accuracy of different bottleneck widths based on pre-trained Swin-T.

Bottleneck
Width

#Trainable
Parameters Cell BUSI Brain TB Covid Average

4 0.174M 0.868 0.855 0.936 0.982 0.940 0.916

8 0.326M 0.885 0.876 0.944 0.992 0.952 0.930
12 0.479M 0.884 0.873 0.944 0.993 0.948 0.928

16 0.631M 0.880 0.868 0.933 0.946 0.925 0.910

32 1.240M 0.880 0.868 0.936 0.988 0.945 0.923

though these strategies have shown promise, the unique requirements of medical
image analysis warrant a more nuanced investigation into the optimal positioning
of LKAs within Transformer blocks.

To this end, we evaluate three placement strategies: (a) positioning LKAs in
parallel with the entire Transformer block,alongside the MLP and MSA modules;
(b) inserting LKAs sequentially before the residual connections in the MSA and
FFN modules; and (c) placing LKAs sequentially after the residual connections in
these modules. As shown in Table 4, the parallel configuration (a) consistently
delivers superior performance compared to the other two strategies.
Comparing Various Enlarging Receptive Field Recipes. We explores the
effectiveness of integrating different convolutions into the LKA to expand the
receptive field: channel-wise convolution (CW-Conv) and dilated convolution
(D-Conv) [31]. Given that the LKA performs best when the kernel size is 7, we
specifically examine three recipes: a single 7×7 CW-Conv, a single 3×3 D-Conv
with the dilation rate of 3, and stacking three 3×3 CW-Convs. Results in Table
5 show that the 7× 7 CW-Conv performed best by effectively integrating global
information with a single large kernel.
Effects of Bottleneck Widths. To determine the optimal bottleneck width d̂
, we conduct a series of experiments comparing different bottleneck widths. As
shown in Table 6, the bottleneck width of 8 achieves the best top-1 accuracy
across five medical datasets, marking the point of performance saturation. Inter-
estingly, further increasing the bottleneck width results in a decline in accuracy.
Parameter Efficiency Analysis. The proposed LKA not only significantly out-
performs the vanilla adapter across five medical datasets, but also does so with
minimal increase in trainable parameters. The total number of trainable param-
eters of LKA is 2× d× d̂+ (k2 + 2)× d̂+ d, where k is the kernel size, while the
vanilla adapter has 2× d× d̂+ d̂+ d. Compared to the vanilla adapter, LKA only
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introduces the additional (k2 + 1) × d̂ parameters. Since d̂ and k are relatively
small values, far less than d, the added parameters can be considered negligible.

4 Conclusion

In this paper, we primarily focus on the challenges of suboptimal performance in
current PEFT methods when adapting pre-trained models to medical imaging
tasks, which is primarily due to the inability to provide large receptive fields.
To overcome this limitation, we propose the Large Kernel Adapter (LKA), which
enhances the receptive field by integrating channel-wise large kernel convolu-
tion into the adapter while maintaining parameter efficiency. Through extensive
experiments, we demonstrate that the LKA consistently delivers significant per-
formance improvements across various pre-trained models and medical imaging
datasets, highlighting its broad applicability and effectiveness. Compared to 11
other advanced PEFT methods, the LKA achieves superior performance across
five medical datasets, further validating its effectiveness in medical imaging tasks.
We believe our findings hold potential clinical value by enabling more effective
adaptation of foundation models to diverse medical imaging tasks.
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