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Abstract. Attributing model predictions to a set of variables is a cru-
cial part of methods in medicine and the sciences. However, in mul-
timodal settings, ablating the contribution of a particular part of an
image is often challenging. We present the STRAP framework (separa-
ble tissue representations for attributable risk prediction) using a novel
masked autoencoder (MAE) enabling learning representations of a vary-
ing number of image patch tokens, enhancing memory efficiency and
flexibility. We apply this framework on a fracture risk prediction task
using clinical features and high-resolution peripheral quantitative com-
puted tomography (HR-pQCT) images, to investigate the contribution
of bone vs. muscle and fat tissues. Unlike previous work, we are able to
selectively include specific tissues in risk prediction, and attribute their
contribution to the risk using ablation and state-of-the-art interpretabil-
ity methods. For the first time, we demonstrate that including soft-
tissue from HR-pQCT increases prediction performance both in terms
of C-index and overall AUC. Source-code is openly published online:
https://github.com/waahlstrand/strap.

Keywords: risk prediction - representation learning - interpretability -
attribution

1 Introduction

Osteoporosis-induced fractures are a serious complication from loss of bone mass,
especially affecting elderly and women, and may severely increase mortality and
reduce quality of life. Identifying individuals at risk is challenging but important
to apply effective preventative measures [19]. Clinical assessment is commonly
done by prediction models, such as Cox Proportional Hazards (CoxPH)[3] or
the Fracture Risk Assessment Tool (FRAX®) [22], which typically estimate the
fracture risk through a set of clinical risk factors like body mass index (BMI),
age, history of fractures and bone mineral density (BMD) [I2J11]. The lattermost
is typically extracted from dual-energy X-ray (DXA) or computed tomography
(CT) images, making imaging an important part of consultation, yet image data
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is rarely included directly, and methods instead rely on similar pre-designed
features. [2114J23T0] Further, in traditional modelling, ablation of these variables
is often used as a method of attributing a change in risk, and a tool to understand
the factors of the underlying condition.

In the context of osteoporosis, the relation between the state of the bones,
low BMD and corresponding fractures is well-established [12/9], and while the
contribution of soft tissues (e.g. muscle, fat) may be modelled with extracted
features such as BMI and DXA trochanteric soft tissue thickness [26J1I25], the
authors are unaware of attempts to directly investigate the separate contribution
of e.g. CT soft tissues to fracture risk prediction, without a priori designed
features of interest.

1.1 Contributions

We propose the multimodal STRAP framework, separable tissue representations
for attributable risk prediction, using novel modification on vision transformers
to enable inclusion of certain ROIs in an images, increasing memory efficiency,
improving performance and enabling attribution to specific areas in an image.
We test the STRAP method on a survival analysis application, estimating the
risk of fracture given tabular risk factors plus bone, muscle and fatty tissues
in high-resolution peripheral quantitative computed tomography (HR-pQCT),
where image size is a limiting factor. The main contributions of this work are:

a) amnovel ViT architecture reducing memory use by means of a variable number
of patch tokens from segmented regions,

b) flexible training and attribution of risk contributions from image ROIs,

¢) and improved fracture risk prediction over baselines from HR-pQCT using
only soft tissue representations.

1.2 Related works

Recent work on osteoporosis-induced fractures rely on extracting manual fea-
tures or radiomics. Jaiswal et al. (2025) [10] show increased risk prediction per-
formance across a number of machine learning algorithms, using finite element
method measures from HR-pQCT bone tissues. Lu et al. (2023) [2I] use texture
metrics from HR-pQCT to improve fracture classification. Such methods are nat-
urally interpretable, but limited, since the features must be known beforehand,
as well as computable. Efforts to include full image data such as DXA or CT in
risk prediction typically employ relatively simple methods, using convolutional
neural networks (CNN). Kim et al. (2024) [I5] use DenseNet modules along the
imaging axes of a hip CT, aggregating the results by voting. Kong et al. (2020)
[16] present a multimodal solution concatenating clinical risk factors and CNN
features from spinal DXAs to predict vertebral risk fracture, and recently also
applied a recurrent CNN to vertebral CT [17], visualizing network attribution
using attention. However, these methods produce latent representations of the
entire image, and are generally not able to separate attribution from specific
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Fig.1: Overview of STRAP. The STRAP approach, producing variable length
sequences from ROI masks, using a custom ViT encoder and decoder to produce
ROI-specific representations z = {Zbone, Zmuscles 2fat ;- Lhese are combined with
clinical risk factors X to predict survival.

parts of an image. Including parts of an image typically relies on cropping [35J6],
which is not suitable when image features are embedded in each other. Methods
such as Grad-CAM and occlusion [2734] have made significant contributions to
image attribution. Integrated gradients (IG) [28] enable a consistent framework
for joint attribution of both image features and tabular data. Vision Transform-
ers (ViT) [5] are compatible with many interpretability methods, natively using
attention for attribution, but scale poorly with image size, especially noticeable
in medical contexts, where images are typically very large.

Masked image modelling [32] and in particular masked autoencoders (MAEs)
[8] are an adaptation of ViTs inspired by masked language modelling, using an
encoder-decoder architecture to reconstruct image patch tokens. The input image
is embedded as a fixed-length sequence, followed by discarding a high degree
of masked patches. The decoder is tasked with reconstructing the discarded
complement of the image given the remaining ones. However, MAE inherits
the computational inefficiency of ViT, and requires full images. Attempts to
accommodate varying size images or post-hoc token selection [30J24J33], still do
not consider a varying number of input tokens (e.g. a ROI), even though this is
the explicit objective of the original transformers [31].

2 Methodology

2.1 Preliminaries on risk prediction

Given a set of N patients with corresponding covariates x; € R” and fracture
events (0;,t;),4 = 1,..., N where t; €]0,T] is the fracture event time until end of
study T, and J; = {0,1} is a binary indicator of an event or censoring, we wish
to estimate a per-patient risk. Traditional methods for risk prediction estimate a
log-hazard function hg : RP? — R for ranking the patients at risk. For example,
CoxPH assumes a linear, time-invariant hazard such that hy(z) = x70. The
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parameters 6 are optimized by minimizing the negative partial log-likelihood,

N
Ecox:—z he(x;) — log Z exp hg(x;) | - (1)

J: tthJ

Recent methods for risk prediction often use variations of DeepSurv [13], which
models hy as a feed-forward neural network, or ConvDeepSurv, using a CNN as
its hazard model. [36T14126]

2.2 STRAP approach

An overview of our multimodal framework is seen in Fig. [T} Given an image Z €

RZXW and K ROI masks M € {0, 1}5XH>W with height H and width W, we

construct two sets of patches with patch size P: image patches x : x,, € RExP?

and mask patches m : m, € {0,1Y5%P* where p = 1,...,.N, N = HW/P2.
The patches x, are selected if covered by the mask, such that the sequences
are filtered based on a threshold hyperparameter 7, keeping only the patches z,,
with 7 ratio of mask pixels my;p,

' ={z,: % Zmijp >} (2)

]

resulting in filtered sequence lengths Ny, < N,k = 1,..., K. Like in ViT [5],
the image patches are linearly transformed by a set of D-dimensional embed-
ding layers E € RV+*P  followed by added positional embeddings E s € RNE
corresponding to the coordinates of the patches in the original image, such that

z = [Tas, @' E| + Epos (3)

is the initial set of tokens sent to the MAE, and x. is a specialized CLS token.
Since ViTs have quadratic input complexity w.r.t. the number of tokens, using a
smaller, variable number input tokens reduces the memory footprint significantly
and enables e.g. larger batch sizes or higher resolution images - often not possi-
ble with standard ViTs. Like in MAE, these embeddings are passed through n
transformer blocks, yielding an encoder embedding fy enc(2) = z(")_ The repre-
sentations z(™ are subsequently passed to the decoder fy gec for reconstruction
using the mean squared error loss compared with ground truth patches, L, ccon-

STRAP variants. We consider three different variations on STRAP, and compare
it with a simple analogue using a CNN.

Simultaneous training. Simultaneous training of a multilayer perceptron hg ¢
with Cox loss, Eq. , leads to the method we dub MAE-STRAP. We use the
MAE approach to learn informative representations of each tissue ROI. This
method is heavy computationally, since it trains both the encoder fy cnc and
decoder fy dec, and thus limits the feasible batch size.
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Self-supervision with probing. Training a MAE with both reconstruction loss
and clinical risk factors with a supervised loss will inevitably lead to influence
from the clinical risk factors on the tissue representations, which may be unde-
sirable for interpretability. The conventional method of training MAE is with
a self-supervised pretraining stage, followed by training the probing predictor
neural network hg on top of the representations from the encoder. We will call
this approach it MAE-STRAP-P.

The benefit of this approach is that it enables a greater batch size during the
training of the predictor network, if that is desired, as well as representations
uninfluenced by the clinical risk factors.

Only encoder. We also consider training the predictor hg 4 using only our
custom ViT encoder fg enc, without self-supervision to train the representations,
increasing computational capacity by avoiding training the decoder at all. We
simply call this method STRAP.

Masked CNN. Lastly, we construct an analogue for our task by simply mask-
ing images by each tissue, producing K images. Each masked image is passed
through the CNN, yielding K separate sets of embeddings z € RE*P  all of
which are fed to a final predictor network. We call this approach CNN-STRAP.

3 Experiments and Results

3.1 Dataset

The Sahlgrenska University Hospital Prospective Evaluation of Risk of Bone
Fractures (SUPERB) is a population-based study of 3028 older women (77.8 £
1.6) from Gothenburg, Sweden [I2JI8TTI0] randomly selected from the na-
tional register, exploring the association of common risk factors and osteoporosis-
induced fractures. HR-pQCT images were collected at up to two locations on the
radius and the tibia, with a total of 11956 volumes. In this study, we consider
the following clinical risk factors: age and BMI, parental history of hip fractures
(FH), current smoker status, oral glucocorticoid use (OG), rheumatoid arthritis
(RA), excessive alcohol consumption (EAC), secondary osteoporosis (SO) and
femoral neck bone mineral density (BMD) t-scores. We evaluate the models on
predicting any kind of fracture in terms of Harrell’s and Uno’s concordance (C)
indexes [729], and cumulative time-dependent AUC, averaging model hazards
over the sites, with a total of 36% incident events in the cohort. For compu-
tational reasons, we restrict ourselves to a slice in the middle of each image
volume.

3.2 Model implementation and training

Fifty patients lacked tabular data or quality imaging, and were excluded from
this study. We randomly held out 298 out of 2978 patients (10%) for final testing,
and divided the remaining 2680 (90%) patients into 3 folds for cross-validation
for model training and tuning. Age and BMI were standardized per fold.
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Method Attr  Input Harrell’s C Uno’s C Mean AUC 3.5-year AUC
CNN-STRAP v img.+clin.|0.629 £ 0.005 0.625 &+ 0.006 0.652 £ 0.004 0.657 + 0.009
MAE-STRAP img.-+clin. [0.628 + 0.002 0.623 + 0.002 0.652 + 0.012 0.656 + 0.012

STRAP img.+clin.|0.632 £ 0.004 0.628 £ 0.004 0.655 &= 0.004 0.657 + 0.002

CoxPH [3] clin. 0.583 £ 0.003 0.588 £ 0.004 0.554 £ 0.002 0.563 £ 0.004
DeepSurv [13] X clin. 0.587 £ 0.000 0.579 £ 0.001 0.561 £+ 0.000 0.577 £ 0.000
ConvDeepSurv [36] X img.+clin.|0.630 £ 0.004 0.624 + 0.004 0.652 £ 0.009 0.654 + 0.005

v

MAE-STRAP-P v img.+clin.|0.626 = 0.004 0.621 £ 0.003 0.648 = 0.001 0.652 = 0.001
v
X

Table 1: Baseline comparisons to our STRAP versions. Columns indicate which
models are tissue attributable and the model input (images and/or clinical vari-
ables). Results as mean+std over folds.

Fig. 2: Visual attribution. Absolute IG attribution of (a) ConvDeepSurv, showing
tendency to focus on extraneous elements such as the leg/arm support (high-
lighted) and background , and (b) STRAP, (c) MAE-STRAP (d) MAE-STRAP-
P constrained to the ROI.

All STRAP methods were trained with a patch size of 16, encoder embedding
size 512 per tissue, decoder embedding size 1024, optimized with AdamW [20]
(learning rate [LR] 5 x 10~%, weight decay 5 x 107%) and batch size 8. MAE-
STRAP and STRAP were trained for 200 epochs, and MAE-STRAP-P for 500
epochs, and patches were dropped randomly uniform with probability p = 0.8
and p = 0.85 respectively. During evaluation, the full set of tissue patches are en-
coded. Results are compared with CNN-STRAP trained for 150 epochs, using an
embedding size of 512 per tissue (LR 1 x 10™%, weight decay 5 x 10~3) and batch
size 8. We compare STRAP with the non-image-based CoxPH baseline (« = 0,
Niterations = 100), using only clinical features, and a DeepSurv model (4 layers,
sigmoid activation, LR 10~%) for 50 epochs, as well as a baseline ConvDeepSurv
with clinical variables but no masking (e.g. [36/16]), using a ResNet50 with 512
embedding size, (LR 5 x 10~%) for 75 epochs.

3.3 Segmentation and preprocessing

The CT volumes were segmented using classical image analysis techniques. The
images were resized from 1536 x 1536 to 512 x 512 for computational reasons,
followed by initial segmentation of tissues and background using k-means at
Hounsfield unit level. The leg/arm rest support was removed using successive
erosion and dilation. Tissue segmentations were iteratively improved using dila-
tion and hole-filling.
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3.4 Model comparison

Table [I] shows the model ablations and baseline comparison results, indicating
that the inclusion of HR-pQCT images increases predictive performance across
all metrics. The STRAP approaches are all at a better or comparable level of
performance compared to the baseline ConvDeepSurv, with added benefit of
enabling a flexible number of tissues. Results also show that MAE-STRAP-P
underperforms in terms of predictive capabilities compared to the best perform-
ing STRAP that uses only the novel encoder.

3.5 Interpretability and tissue attribution

Deep learning features have a distinct drawback, not being immediately inter-
pretable, and encoding unknown image properties. We visualize attribution of
the top-performing model STRAP and its self-supervised counterpart MAE-
STRAP-P in image space and in representation space. Figure [2] shows a com-
parison of the absolute attribution from IG on ConvDeepSurv, STRAP, MAE-
STRAP, and MAE-STRAP-P. While for ConvDeepSurv, attribution focuses on
parts of the cortical bone, and outer parts of the tissues, it also yields unde-
sired attributions on the leg/arms support (indicated with an arrow) and back-
ground. The STRAP methods are limited to the input patch tokens by design,
but show different areas of attribution. The similarities between STRAP and
MAE-STRAP vs. MAE-STRAP-P indicates that training with a decoder does
not strongly influence the attributions.

At a representation level we aggregate the attributions of tissue represen-
tations. Figure [3p) shows the IG attribution for clinical variables and the sum
of attributions from bone, muscle and fat, indicating agreement between mod-
els on clinical risk factors, and but not on the tissue representations, where fat
have aggregated negative attribution to the log-hazard for MAE-STRAP-P, and
positive for STRAP, and bone attribution is net zero. It is likely that different
methods encode fundamentally different representations, requiring closer inspec-
tion. Figure ) shows the correlation between clinical features and tissues in
MAE-STRAP-P, which shows that this method produces e.g. bone features with
high correlation to BMD, in line with clinical intuition.

3.6 Tissue ablation and memory gains

We emphasize that the flexibility of our method allows us to train models in-
formed by selected tissues. Using only bones leads to a 90% reduction in number
of tokens. Since ViT has an input complexity of the input length squared, this
yields an 80% reduction in memory use, by simply removing empty space. Since
our framework enables an ablation of tissue variables, see Table [2| we can test
the impact of soft tissues (muscle-+fat) for prediction, especially in relation to
the clinical BMD feature. By training models with only bone and soft tissues,
but no BMD, we find that the signal of the BMD is likely strong enough to
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Fig.3: Feature contributions. (a) Mean attribution, with methods agreeing on
contribution from clinical features, but not from tissue representations. (b) Av-
erage abs. correlation between tissue representations and corresponding clinical
features (MAE-STRAP-P), showing some clinically intuitive overlap.

bones muscle+fat BMD ¢ Harrell’s C Uno’s C Mean AUC 3.5-year AUC

v v v ]0.632 £ 0.004 0.628 & 0.004 0.655 £ 0.004 0.657 £ 0.002
X 4 v ]0.631 £ 0.003 0.627 + 0.001 0.657 £ 0.009 0.660 + 0.005
v X v ]0.630 £ 0.003 0.625 % 0.002 0.652 £ 0.007 0.658 £ 0.006
v X X 10.604 £ 0.009 0.602 +£ 0.006 0.608 + 0.017 0.595 £ 0.013
X v X 10.604 £ 0.008 0.604 £ 0.007 0.607 + 0.017 0.593 £ 0.007
CoxPH X 10.563 £ 0.003 0.566 £ 0.001 0.548 4+ 0.003 0.553 £ 0.003

v 0.583 £ 0.003 0.588 £+ 0.004 0.554 £ 0.002 0.563 £ 0.004

Table 2: Ablation of tissues. Predictive performance of STRAP (mean# std over
folds) from including soft tissues versus only bone features and BMD metrics.

supplant part of the contribution of the other variables, but Table [2] nonethe-
less shows that adding either tissue separately increases predictive power, and
with the best model including all tissues and BMD. In conclusion, STRAP per-
form comparably or slightly better across metrics while providing meaningful
attribution and greater flexibility.

4 Discussion and Conclusion

We present STRAP, a vision transformer modification using tissue masks of vary-
ing sizes for efficient computations and tissue differentiation. As demonstrated,
STRAP enables calculation and analysis of separate tissue attributions to frac-
ture prediction, improving interpretability over standard methods. Our results
also show that multimodal inclusion of HR-pQCT and clinical risk variables
yields better predictive performance of future fractures compared to standard
methods, whilst also enabling the analysis of separate tissue contributions. Tis-
sue ablations indicate that both bones and soft tissues carry predictive power.
In addition, we found that STRAP features correlate to clinical variables as ex-
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pected (e.g. bones representations to BMD and soft tissues to BMI), indicating
that STRAP learns informative representations, encouraging future analysis.

One limitation of STRAP is its reliance on pre-segmented tissue masks. How-
ever, there are many classical approaches (like the one used here) and there ex-
ist many off-the-shelf segmentation models that can be integrated in a STRAP
pipeline. Furthermore, we did not train a sophisticated aggregator over the imag-
ing sites, but randomized site during training and averaged over all four during
inference. Although we do not expect a learned aggregator to change the results
significantly, this could be implemented in future work. Additionally, future work
should adapt this work for full 3D volumes.

Finally, while this work focuses on bone, fat, and muscle tissue in CT for
fracture risk prediction, our STRAP framework is general and broadly applicable
for attributing multimodal survival to ROIs, e.g. cell types in histopathology,
gene activation in spatial transcriptomics or areas of the brain in MRI.
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