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Abstract. Functional magnetic resonance imaging (fMRI) is a powerful
tool for diagnosing neurological disorders. However, accurately distin-
guishing disease-related features from confounding covariates (e.g., age,
gender, site) and individual variability remains a challenge. To tackle
this problem, we propose a novel graph disentanglement learning (GDL)
framework that decomposes the latent features from fMRI images into 3
components: disease-related features, covariate-related features, and in-
dividual variations. The covariate-related features are learned by aligning
2 subject similarity matrices between the features and the true covariates.
The disease-related features are guided by a classification loss. We vali-
date our method on 3 fMRI datasets: ADHD-200, schizophrenia (SCZ),
and Presbycusis. The method outperforms existing approaches by an av-
erage of 0.5%, 1.7%, and 2.1% in accuracy on the 3 datasets respectively.
Ablation studies confirm that our model is robust to hyperparameter se-
lection. The disease-associated regions identified by our model align with
established clinical findings. These results suggest that GDL is a promis-
ing tool for fMRI-based disease diagnosis and biomarker discovery. The
code is publicly available at https://github.com/perpetualmachine/
GDL_MICCAI.

Keywords: graph neural network - disentangled representation learn-
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1 Introduction

Neurological disorders, such as attention deficit hyperactivity disorder (ADHD)
and schizophrenia (SCZ), have gained significant attention due to their increas-
ing contemporary prevalence [1]. Early diagnosis of neurological disorders can
provide valuable information to subsequent treatments. One way of diagnosing
neurological disorders is to use functional magnetic resonance imaging (fMRI)
which measures blood oxygen level-dependent (BOLD) signals in the brain [2].

Existing methods for diagnosing neurological disorders using fMRI can be
broadly categorized into traditional machine learning (ML) and deep learning
(DL) approaches. Traditional ML methods typically involve a pipeline of feature
extraction, e.g., amplitude of low frequency fluctuations (ALFF) [3] and regional
homogeneity (ReHO) [4], followed by feature classification. These methods suffer
from the limited features extracted from the traditional feature extraction tech-
niques. In contrast, DL methods, particularly graph neural networks (GNNs)
[5], automatically extract features from fMRI data, potentially offering better
performance in disease diagnosis.

GNN-based fMRI analysis can be broadly categorized into graph-level classi-
fication and node-level classification [1]. Graph-level classification treats a graph
as an instance and tries to classify the graphs [6]. Node-level classification com-
bines all the graphs to a large population graph with the node being the individ-
ual graph and performs node classification [7]. In the learning process, various
techniques, such as adversarial learning [8] and self-supervised learning (SSL)
[9], have been adopted. Despite a plethora of these GNN-based fMRI methods,
they face a critical challenge: they struggle to disentangle disease from covariates
(e.g. age, gender, site, etc) and individual variability in feature extraction.

Recently, a few works have attempted to disentangle ages in a regression
setting [10]. However, they usually only consider the age as the covariate and
assume a linear mapping from features to ages. In contrast, real-world images
are influenced by multiple covariates (e.g. age, gender, site), and enforcing a
linear relationship between features and covariates may overly constrain the
representation space.

Inspired by contrastive variational autoencoder [11], we propose a novel graph
disentanglement learning (GDL) framework to address this challenge. GDL takes
graphs constructed from the fMRI data as input, consists of a GNN encoder and 3
following components: an individual head, a covariate head, and a disease head.
The features from the disease head are trained to separate the patients from
the healthy controls while the covariate head is trained to reflect the covariate
information. Different from prior works, we consider all covariates and do not
require a linear relationship between features and covariates. The individual head
is introduced to account for the variability across individuals that cannot be
explained by disease or covariates, considering that even healthy controls with
the same age and gender will have quite different images. The features from
all the 3 heads are concatenated and fed into a reconstruction head to enhance
feature representation. Our model was evaluated on 3 datasets — ADHD-200,
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SCZ, and Presbycusis — and demonstrated promising classification performance.
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Fig.1: Overview of the GDL architecture. It is a disentangled representation
learning framework comprising 3 components, an individual head, a covariate
head, and a disease head, in an encoder-decoder architecture. The disease head
is followed by a classification loss to learn disease-related features. The covariate
head is followed by a computation of subject feature similarity matrix that is
enforced to be similar to the subject similarity matrix from the true covariates.

2 Graph Disentanglement Learning

An overview of the framework is shown in Fig. 1. Suppose we have triplets
of graph, covariate, and class label {(G;,¢;,y;) : @ = 1,...,B} from B sub-
jects, where G; = (A;, X;) is a graph of N nodes constructed from the fMRI
image of the ith subject with 4; € RV*N being the adjacency matrix and
X; € RN*™ heing the node features. GDL aims to learn a GNN encoder on the
graph that can isolate disease-related features from covariate-related features
and individual variations. To achieve this, first, a GNN encoder Enc extracts
features z; = Enc(G;),i = 1,..., B from these graphs. Then the features go
through 3 projection heads: an individual head g;, a disease head gp, and a
covariate head gc. The features after the individual head, 2/ = gr(z;), are nor-
malized such that they are from a standard Gaussian distribution. The features
after the disease head, 2P = gp(z;), are followed by a cross entropy loss us-
ing the class labels {y; : i = 1,..., B}. The features after the covariate head,
zf = go(z;), are computed between any 2 subjects to create a B x B similarity
matrix. This similarity matrix is enforced to be close to the similarity matrix
derived from the true covariates {¢; : ¢ = 1,..., B}. Finally, the features from
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the 3 heads are concatenated and fed into a decoder Dec to reproduced the node
features. The details of each component is given below.

Encoder design and feature separation The GNN encoder maps the input
graph G; = (4;,X;) to a latent representation z;. The encoder consists of 2
layers of message passing process and a global average pooling layer. We use
the message passing process from the graph isomorphism networks (GINs) [12]:
HY = MLP (1 + T+ A)H™V) 1 = 1,2, where H® = X;, H{" is the
updated node representations at layer [. We use ¢ = 0. The multilayer perceptron
(MLP) applies to each node with 2 linear layers and ReLU activation in the
middle. After the average pooling layer, G; leads to a feature vector z; € R
We assume that z; contains 3 kinds of information: disease-related informa-
tion 2P| covariate-related information z&, and individual variation z/. To extract
these 3 kinds of information, we employ 3 independent MLPs, each with the
same architecture but independent parameters, to map z; into 3 d-dimensional
features: 2P = gp(2), 2& = go(2:), 2] = gr(zi). These features then go through
different branches such that they contain the corresponding information.

Identification of covariate-related features To make the features z& be
related to the the covariates, we calculate the subject similarity matrix from
these features and make it close to the similarity matrix from the true covariates.

Specifically, for features from any two graphs z&, 2§, we compute their cosine

7 ) ¥l )
similarity: §;; = (le)TzJC/HzICH ||zJC|| All these cosine similarities form a matrix
S = [3;5] € RE*B. This matrix should be close to the similarity matrix from the
true covariates.

Suppose that the true covariates are denoted by ¢; = {ci : k € C},i =
1,...,B, where C is the set of covariate names, e.g. C = {age, gender, site,
education}. To calculate the similarity matrix S = [s;;] € RP*5 from the co-
variates of all the subjects, we first define the similarity s;; between subject ¢ and
j. There are 2 kinds of covariate variables: continuous variable and categorical
variable. For continuous variables (e.g. age, years of education), we apply min-
max normalization to normalize them in the range [0, 1], and use one minus their
difference as the similarity. For categorical variable (e.g. gender, site), we use 1
as their similarity if the 2 categorical variables are the same and 0 otherwise.
Hence, for the kth variable, the similarity is defined by

1 — |Gk — ¢il, if k continuous . cir, — min(cg)

P Cik = N
e = cjr), if k categorical o max(c;) — min(cig)’

Sk(cik,cjk) = {

where I(-) is the indicator function: 1 if the inside condition holds and 0 oth-
erwise. The final similarity s;; between subject ¢ and j is a summation of all
the components, i.e., sij = >, cc sk(Cik, cjx). Then the similarities from any 2
subjects form the similarity matrix S = [s;;] € RP*B,

Finally, with S and S defined above, we define the covariate loss using the
Frobenius norm of the difference between the 2 matrices: Leoy = [|S — S|/%.
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Identification of disease-related features and individual features To
learn disease-related features z”, we introduce class labels {y; : i = 1,..., B} to
separate {z” : i = 1,..., B} in a supervised loss function. Specifically, we use
another 2-layer MLP to map 2P to logits which are followed by a cross entropy
loss Ly, using the class labels.

Apart from the covariate-related features and disease-related features, we
consider what remain as individual variations. These individual features z! are
assumed to follow a standard Gaussian distribution. This is accomplished by nor-
malizing each channel of z] such that the mean is 0 and the standard deviation
is 1. This operation gives the normalized individual features z;.

Finally, the 3 features, 27, zlc , 2!, are concatenated and fed to a decoder Dec
to reproduce the node features. The decoder is implemented as another 2-layer
MLP. Denote the reproduced node features by X; = Dec([zP; 2C; 2I]). We use
a reconstruction loss to ensure that the reconstructed features XZ is similar to
the original node features X;: Liec = Zf;l X5 — X%

In summary, our loss function is a linear combination of the supervised cross
entropy loss, the covariate loss, and the reconstruction loss:

L= Lsup + M Lcov + A2 Lrec.

where \; and Ay are regularization hyperparameters. This formulation ensures
that the learned features effectively disentangle disease-related information, in-
dividual variations, and non-imaging covariates.

3 Experiments and Results

3.1 Experimental Setup

Datasets We used 3 fMRI datasets: one publicly available dataset — ADHD-
200 — and two private datasets — SCZ and Presbycusis. The fMRI images
were preprocessed using the fMRIPrep pipeline [13], which includes reference
image estimation, head motion correction, slice timing correction, and suscepti-
bility distortion correction. After aligning the volumes to the MNI152 space, we
regressed out confounders such as framewise displacement, global signals, and
mean tissue signals. Quality control resulted in retention of 275 ADHD and 205
healthy control (HC) subjects for ADHD-200, 190 HC and 137 SCZ subjects
for SCZ, and 112 HC, 130 normal pure-tone audiometry, and 154 presbycusis
subjects for the Presbycusis dataset. We then used the AALI atlas [14] to divide
the brain into 116 regions, and calculated the mean time series (BOLD signals)
for each region. The adjacency matrix was computed using Pearson’s correla-
tion coefficient between the mean time series of two regions. The node features
were derived through the Fourier transform of the mean time series, capturing
the total power of 3 low-frequency bands of the ALFFs (Slow-5: 0.01-0.027 Hz,
Slow-4: 0.027-0.073 Hz, and Classical: 0.01-0.08 Hz).
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Implementation details Our model is implemented in PyTorch and designed
to run on a single GPU. The experiments were accelerated using two servers,
one equipped with 8 NVIDIA V100 GPUs and the other with 2 NVIDIA A6000
GPUs. The implementation hyperparameters include a learning rate of 0.001, an
embedding dimension d = 32, a batch size B = 32, and Ay = 1, A2 = 0.6. The
MLPs for the feature separation (gp/gc/gr), cross entropy loss, and decoder
have similar structures. All have 2 linear layers with ReLLU activation in the
middle, with the input and middle dimensions being 32, 64 respectively. The
output dimensions for the feature separation, cross entropy loss, decoder are 32,
number of classes, and 3 x 116 respectively. For all the GNN encoders, we use a
threshold of zero to set all negative values in the adjacency matrix to zero [15].

Competing methods We compare our proposed GDL framework with 9 com-
peting methods, including 2 supervised learning (SL) methods, BrainGNN [16]
and NEGAT [17], 7 self-supervised learning (SSL) methods, GraphCL [18],
JOAO [19], LaGraph [20], AGCL [21], GATE [7], BrainGCL [6], and 1 graph
disentangling framework, DMG [22]. For the SL methods, we also incorporated
a version that takes the adjacency matrix and node features with covariates re-
gressed out in the preprocessing. For the SSL methods, we use a linear SVM [23]
for the subsequent disease classification.

We split each dataset into 60% training, 20% validation, 20% test, used the
training set to train the models for 300 epochs, selected the best epoch based on
the validation set, and reported the accuracy on the test set. We repeated the
above procedure 5 times in cross validation. For the SSL methods, following [21],
the model was trained on the entire data, but the SVM classifier was only trained
on the training set, and the final score was reported on the test set based on the
best validation epoch. We used the accuracy and AUC as evaluation metrics,
with OvR-AUC [24] for the 3-class classification (Presbycusis) task.

3.2 Results

Classification performance The results show that the SL methods and SSL
methods perform similarly across the 3 datasets, with SSL methods generally
outperforming SL methods. For the SL methods, there is no significant difference
between the original version and the covariate-regressed version. The proposed
GDL framework outperforms all methods in accuracy across the 3 datasets. For
AUC, GDL also achieves the best performance on Presbycusis and the second
best result on SCZ and ADHD.

Ablation studies and sensitivity analysis We removed the individual head
(g1), the covariate head (g¢), and both of them (reducing to a simple supervised
GNN with reconstruction) to show their importance. As shown in Table 1, the
version without both performs worse than all the competing methods. Removing
gc leads to a more significant performance drop compared to removing gy, high-
lighting the critical role of g¢. Overall, both components contribute significantly
to our model’s performance.
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Table 1: Classification results (mean =+ std) on 3 datasets using 5 train-
ing/validation/test splits. The best training epoch on the validation set is ap-
plied to the test set to evaluate the performance. The best performances are
highlighted in bold, with the second best underlined. The italicized methods
handle data with covariates regressed out in the preprocessing.

ADHD SCZ Presbycusis

Type|Methods Accuracy AUC Accuracy AUC Accuracy OvR-AUC

BrainGNN 62.22 £ 3.87 | 63.04 = 4.42 | 64.86 £+ 3.57 | 64.48 £+ 2.73 | 83.09 £+ 4.41 | 84.02 £ 4.51

SL BrainGNN 62.24 £ 3.76 | 62.10 £ 3.85 | 64.91 £+ 4.25 | 65.02 £ 4.10 | 83.17 £+ 3.76 | 83.44 £+ 3.49

NEGAT 62.08 £ 2.94 | 62.95 £ 3.35 | 63.33 £ 4.56 | 64.09 £ 3.91 | 82.79 £ 3.85 | 82.95 & 3.36
NEGAT 62.19 £ 3.14 | 62.01 £ 3.49 | 63.44 £ 4.03 | 63.38 & 3.98 | 82.85 £ 4.60 | 82.20 & 3.99
GraphCL 62.86 £ 4.71 | 62.21 £ 4.27 | 65.31 £ 4.72 | 65.19 £ 4.40 | 83.45 £+ 4.49 | 82.50 £ 3.92
JOAO 61.92 £ 3.72 | 62.12 £ 3.84 | 64.92 £+ 5.11 | 64.80 £ 4.63 | 83.15 £+ 3.77 | 82.69 £+ 4.43
LaGraph 63.88 £ 2.68 |63.92 £ 2.63| 65.25 + 3.83 | 64.46 £ 4.30 | 83.85 £ 4.02 | 83.19 £ 3.46
SSL |AGCL 63.25 £ 4.18 | 62.63 £ 4.29 | 67.25 £ 4.18 | 65.35 & 3.64 | 84.15 £ 4.17 | 83.55 & 3.86
GATE 62.25 £ 3.84 | 62.71 £ 4.03 | 66.28 £ 3.71 | 66.05 & 4.12 | 83.97 & 3.47 | 83.27 & 2.49
BrainGCL 62.05 £ 3.59 | 61.52 £ 3.70 | 65.27 £ 2.97 | 64.31 £ 3.59 | 82.85 £+ 2.98 | 83.06 & 4.14
DMG 62.57 £ 2.95 | 62.08 & 3.51 | 67.14 &+ 3.95 |68.52 £ 4.41| 84.08 £ 3.19 | 83.95 & 4.39

Ours w/o g1 63.14 £ 3.26 | 62.91 £ 3.47 | 67.29 £ 3.12 | 66.93 £ 3.95 | 85.18 £ 2.86 | 85.09 & 3.42
GDL|Ours w/o gc | 61.87 £ 3.44 | 61.20 & 3.57 | 66.15 + 3.46 | 65.72 & 3.78 | 85.14 + 2.93 | 84.56 + 4.20
Ours w/o both| 60.62 £ 4.29 | 60.24 + 4.75 | 64.29 £ 3.52 | 63.86 + 3.70 | 80.79 £ 3.81 | 80.11 + 4.23
Ours 64.38 + 3.46| 63.09 + 4.58 |68.95 + 4.26| 68.28 + 4.87 |86.28 + 3.75|86.44 + 5.12

We tuned the hyperparameters A; and Ay both in the range {0,0.2,0.4,0.6,
0.8,1.0}. As shown in Fig. 2a, higher values of A; and Ay generally yield better
performance, suggesting that the covariate loss and reconstruction loss are useful.
Especially, when A; is sufficiently high, the classification performance remains
stable even when As changes. In 3, 9, 15 out of 25 settings from the 3 datasets
respectively, our framework outperforms the second best method with statistical
significance, demonstrating the robustness of these hyperparameters.

We also replaced the GNN encoder with GIN, GCN, GAT, GraphSage on
the 3 datasets. As shown in Fig. 2b, GIN performs the best among all the
GNN encoders across the 3 datasets. Although some GNN encoders show a
slight performance drop, most of them still outperform the second best method,
demonstrating the robustness of backbone selection.

We tuned the dimension of the latent features d in the range {16, 32, 48, 64, 80,
96,112, 128}. As shown in Fig. 2¢, 32 is the optimal choice on all the 3 datasets,
though 64 leads to better results on SCZ and Presbycusis.

In terms of time cost, our model is also efficient enough, with the smallest
training/inference time among all the methods (Fig. 2d).

Interpretability analysis To assess node importance, we computed the gra-
dient of the logits (before the cross entropy loss) with respect to the adjacency
matrix. The gradients from all the patients are averaged to produce a global
saliency map. Then we sum up each row of this saliency map to get the impor-
tance score of each brain region. These importance scores are sorted and the top
10 important regions are visualized in BrainNet viewer [25]. As shown in Fig. 3,
the cerebellum plays a significant role in all 3 diseases. In addition, the thalamus
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and pallidum are implicated in ADHD [26, 27], while the amygdala is associated
with SCZ [28, 29] and Presbycusis [30, 31], aligning with clinical findings.
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4 Conclusion

In this paper, we proposed a novel graph disentanglement learning (GDL) frame-
work that separates latent features into individual-related, covariate-related, and
disease-related components. Our model achieved state-of-the-art classification
performance across 3 datasets: ADHD-200, SCZ, and Presbycusis. Ablation stud-
ies validated the importance of feature separation and sensitivity analysis showed
the robustness of our framework to hyperparameter selection. Interpretability
analysis identified disease-related brain regions that align with established clini-
cal findings. These suggest that GDL could be a promising tool in fMRI analysis.
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