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Abstract. Image segmentation is a fundamental task in both image anal-
ysis and medical applications. State-of-the-art methods predominantly
rely on encoder-decoder architectures with a U-shaped design, commonly
referred to as U-Net. Recent advancements integrating transformers and
MLPs improve performance but still face key limitations, such as poor
interpretability, difficulty handling intrinsic noise, and constrained expres-
siveness due to discrete layer structures, often lacking a solid theoretical
foundation.In this work, we introduce Implicit U-KAN 2.0, a novel U-
Net variant that adopts a two-phase encoder-decoder structure. In the
SONO phase, we use a second-order neural ordinary differential equa-
tion (NODEs), called the SONO block, for a more efficient, expressive,
and theoretically grounded modeling approach. In the SONO-MultiKAN
phase, we integrate the second-order NODEs and MultiKAN layer as
the core computational block to enhance interpretability and represen-
tation power. Our contributions are threefold. First, U-KAN 2.0 is an
implicit deep neural network incorporating MultiKAN and second order
NODEs, improving interpretability and performance while reducing com-
putational costs. Second, we provide a theoretical analysis demonstrating
that the approximation ability of the MultiKAN block is independent
of the input dimension. Third, we conduct extensive experiments on a
variety of 2D and a single 3D dataset, demonstrating that our model
consistently outperforms existing segmentation networks. Project Website:
https://math-ml-x.github.io/IUKAN2/
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1 Introduction

Image segmentation is crucial in many applications, particularly in medical
imaging and computational sciences, where accurate delineation of anatomical
structures is essential. Traditionally, this task has relied on manual annotation
by clinicians—a process that is both time-consuming and costly. Recently, deep
learning methods, especially convolutional neural networks (CNNs), have signifi-
cantly improved segmentation accuracy. Among these approaches, U-Net [22] and
its variants have become foundational due to their effective encoder-decoder archi-
tectures with skip connections. Building on U-Net’s success, numerous extensions
have been developed to enhance performance further. For instance, ResUNet [27]
incorporated residual units to facilitate the training of deeper networks. Inspired
by this work, various block-based architectures [28,13,24] have also been explored.
CNN-based models excel at capturing local dependencies but often struggle with
global contextual information. To address this, researchers have integrated Trans-
formers into U-Net architectures, with Attention U-Ne [19] pioneering the use of
attention mechanisms. Later, transformer-based U-Net variants [21,2] were intro-
duced to reduce computational costs while maintaining performance. The Mamba
framework [7] emerged as an alternative to traditional Transformers, offering
comparable performance with reduced computational complexity from quadratic
to linear. Models like U-Mamba [17] and Swin-UMamba [14] further build on
the Mamba framework, incorporating aspects of nnU-Net [9] architecture, which
requires pre-training. Both CNN-based and transformer-based models discretise
continuous functions, while Continuous U-Net [4] offers a continuous block to
address this. The continuous formulation of Second Order NODEs [18,3] enables
O(1) memory cost and has been applied in various tasks [25,26,20]. Inspired
by Kolmogorov–Arnold Networks (KANs) [16], which use learnable activation
functions at edges to optimise feature representation, U-KAN [12] integrates a
Tokenised KAN Block with a Convolution Block in U-Net, but relies only on
addition. MultiKAN [16] extends KANs by incorporating both addition and
multiplication, improving capacity and interpretability.

In this study, we address the limitations of U-KAN by introducing Implicit
U-KAN2.0, which builds on implicit neural networks for improved efficiency
and interpretability. Our approach introduces two key novelties: 1) the
Second Order Neural ODE (SONO) block, which transforms discrete functions
into continuous ones while maintaining constant memory cost, and 2) the SONO-
MultiKAN block, which integrates SONO with a tokenised MultiKAN layer for
enhanced representation power. Compared to U-KAN, our method redesigns the
architecture by replacing convolutional blocks with SONO, improving discretisa-
tion and stability. Furthermore, we introduce a bottleneck module to refine the
flow of information between the encoder and decoder, optimising feature retention
and improving overall model performance. Instead of additive skip connections,
we employ feature concatenation to preserve richer representations. Additionally,
unlike KAN-based U-Nets, which lack full GPU compatibility, our model fully
optimised for GPU-based training while maintaining constant memory costs and
ensuring scalability. Our contributions: I) We introduce a novel implicit
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Fig. 1. Overview of Implicit U-KAN2.0. The upper section shows the SONO Block and
the MultiKAN layer, while the lower section provides the overall architecture.

deep neural network powered by our SONO block, which enhances the model’s
ability to evolve features continuously, improving both accuracy and stability in
segmentation tasks. II) We provide theoretical analysis demonstrating that the
MultiKAN block’s approximation, with high expressiveness, is independent of
input dimensionality. III) Extensive experiments on multiple 2D and 3D datasets
confirm that our model outperforms existing segmentation networks.

2 Methodology

This section outlines the key contributions of Implicit U-KAN2.0, highlighting its
dynamic feature evolution and enhanced interpretability, which result in higher
accuracy and greater efficiency in medical image segmentation tasks. Additionally,
we provide a detailed overview of its architecture.

2.1 Implicit U-KAN2.0 is Dynamic

The first key highlight of our Implicit U-KAN2.0 is using Second-Order Neural
Ordinary Differential Equations (NODEs) to model the continuous evolution
of feature representations, namely SONO block. This dynamic modelling al-
lows for smoother learning trajectories and faster convergence compared to
existing methods. The second-order NODEs governing feature evolution is:
ẍ(t) = f(x, ẋ, t, θf ), ẋ(t0) = g(x0, θg), x(t0) = x0. where f and g are both
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neural networks and x(t) represents the feature vector. The feature was evaluated
as a continuous representation and solved by the ode solver in both forward and
backward propagation. In addition, the adjoint method was introduced during
backpropagation in order to achieve a constant memory cost. By incorporating
velocity into the system and extending the solution space to three dimensions,
Implicit U-KAN 2.0 achieves faster convergence to optimal feature representa-
tions, enhanced stability, and more precise segmentation boundaries. This is
particularly important medical imaging where precise boundary delineation is
required. To achieve this, we introduce the velocity term v(t) = x′(t), reformu-
lating the problem into a system of first-order ordinary differential equations
(ODEs):ẋ(t) = v(t), v̇(t) = f(v(t), t,θ). This transformation expands the
phase space to [x(t),v(t)]⊤ ∈ R2n, which accelerates convergence by enabling
trajectory corrections in both position and velocity enabling trajectory correc-
tions in both position and velocity. As a result, convergence is accelerated while
maintaining stability. Additionally, the RK4 method is employed to approximate
a more stable solution, further improving numerical robustness. This continuous
feature evolution ensures smoother transitions in learned representations, which is
crucial for medical image segmentation. By capturing gradual changes, it reduces
overfitting and makes the network more resilient to noisy, common in medical
imaging. This leads to more stable feature extraction and improved segmentation
accuracy, even with low-quality images.

2.2 Implicit U-KAN2.0 with higher interpretability

The second key contribution of Implicit U-KAN2.0 involves the integration of
Second-order NODEs and MultiKAN layer. Similarly to a SONO block, we first
transform the discrete feature vector into a continuous second-order function.
Then, the features are further refined using tokenlised MultiKAN layer. In KAN,
weight matrix was learned by a b-spline function. Inspired by the Kolmogorov-
Arnold representation theorem (KART), any continuous function defined in a
high-dimensional space can be expressed as a finite combination of continuous
functions, each depending on a single variable, along with summation operations.
Formally, for any smooth function f , f(x) =

∑2n+1
q=1 Φq

(∑n
p=1 φq,p(xp)

)
, where

x is the input feature vector, φq,p and Φq are univariate functions capturing
feature interactions. KAN with L layers can be written as a set of composition
functions: KAN(x) = (ΦL−1 ◦ · · · ◦ Φ1 ◦ Φ0) (x)

However, to enhance both interpretability and capacity, MultiKAN was
introduced such that incorporates both addition and multiplication operations.
MultiKAN extends the standard KANs by interleaving multiplication sub-layers
with the conventional addition-based layers. Concretely, the network is defined
by two sequences of array sizes: ma = [ma

0 ,m
a
1 , . . . ,m

a
l ] for addition arrays, and

mn = [mn
0 ,m

n
1 , . . . ,m

n
l ] for multiplication arrays. A multiplication layer can be

divided into two components. The first component transforms the addition nodes
without performing any additional actions, while the second component carries
out the multiplication. A single MultiKAN layer Ψi is constructed by combining
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the corresponding KAN layer Φi with Mi, and the full MultiKAN is obtained by
composing these combined layers.

MultiKAN(x) =
(
ΨL ◦ ΨL−1 ◦ · · · ◦ Ψ1

)
(x). (1)

This architecture enriches the interactions among feature arrays and can lever-
age standard training and regularization methods from the KAN framework
because we do not perform additional training in this sub-layer. Similar to KANs,
we demonstrated that MultiKAN’s approximation ability is not influenced by
dimensionality; rather, it depends on the residual rate.

Theorem 1 (Kolmogorov Arnold theorem for MultiKAN). Suppose that
we define MultiKAN(x) = f as in (1) and assume Ψl,i,j is (k+1)-times continu-
ously differentiable. Then, for a given function G-grid B-spline functions, there
exist exists a constant C, dependent on f , such that the following holds for all in-
tegers m with 0 ≤ m ≤ k:

∥∥MultiKAN(x)−
(
ΦG
L−1 ◦ΦG

L−2 ◦· · ·◦ΦG
1 ◦ΦG

0

)
x
∥∥
Cm ≤

C G−k−1+m.

Proof. This proof follows a similar approach to that in Theorem 2.1 [16] and we
provide a sketch of the proof in here. By the B-spline lemma and the continuity
of the functions Ψl,i,j , these functions remain uniformly bounded on any domain.
Then we can write MultiKAN(x) −

(
ΦG
L−1 ◦ ΦG

L−2 ◦ · · · ◦ ΦG
1 ◦ ΦG

0

)
x = QL−1 +

QL−2 + ...+Q1 +Q0, where Ql =
(
ΦG
L−1 ◦ · · · ◦ ΦG

l+1 ◦ Φl ◦ Φl−1 ◦ · · · ◦ Φ0

)
x −(

ΦG
L−1 ◦ · · · ◦ ΦG

l+1 ◦ ΦG
l ◦ Φl−1 ◦ · · · ◦ Φ0

)
x was bounded by CG−k−1+m.

2.3 Implicit UKAN2.0 Architecture

The architecture of Implicit U-KAN2.0 seamlessly integrates its components
within a unified encoder-decoder framework. The operation workflow is delin-
eated into two phases: the SONO Phase and the SONO-MultiKAN Phase. Figure
1 shows the overall architecture and the detailed components of each Block.
SONO Phase: The initial input image X0 is first processed to establish an
initial velocity. Subsequently, the extracted features are propagated through a
SONO Block, yielding an output defined by: XL = Conv(ODEBlock(XL−1)),
where Xℓ ∈ RHℓ×Wℓ×Cℓ , where Xℓ ∈ RHℓ×Wℓ×Cℓ denotes the feature map at the
l-th layer. Within the SONO Block, we initially employ a function to model the
second-order derivative. The resulting output is then fed into an ODE Block,
thereby facilitating the approximation of continuous second-order NODEs. Sub-
sequently, we enhance the number of features and perform downsampling via
a convolutional layer. In the forward pass, the ODE block is formulated as
ODEBlock(vt) = ODESolve(v(t0), f, t0, tu, θ) and the loss function is defined by
L(v(tu)) = L

(
v(t0) +

∫ tu
t0

f(v(t), t, θ) dt
)
= L (ODESolve(v(t0), f, t0, tu, θ)).

SONO-MultiKAN Phase: In the SONO-MultiKAN phase, the ODE Block
is initially applied, followed by the tokenization process to prepare the features for
the MultiKAN layer. MultiKAN utilizes learnable activation functions to enhance
interpretability. First, the SONO output XL from the previous two encoders are
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transformed into a collection of flattened two-dimensional patches, consistent
with the methodology described in [6]. Specifically, XL is partitioned into M
patches, each of dimensions K×K, such that M = HL×WL

K2 . Each patch, denoted
by Xi

L ∈ Rk2·CL , is subsequently projected into a d -dimensional embedding space
through a learnable linear mapping E ∈ R(P 2·CL)×d. Consequently, the initial
token embeddings are represented as Z0 =

[
X1

LE; X2
LE; . . . ; XN

L E
]
. These em-

beddings are then processed by a MultiKAN module with interleaved multiplica-
tive layers to capture higher-order, non-linear feature interactions. Next, a three-
layer MultiKAN module is employed to further extract features, which is then
followed by a depth-wise convolutional layer (De-WiseConv). A residual connec-
tion is incorporated by adding the original token embeddings, mathematically ex-
pressed as: ZK = LN(Zk−1 + De-WiseConv(MultiKAN((ODEBlock(Xk−1))) =
LN(Zk−1+De-WiseConv(MultiKAN(Zk−1). The MultiKAN block provides struc-
tural transparency through tokenised basis functions with explicit mathematical
roles, unlike saliency maps, which offer approximate explanations for black-box
models.

Decoder: Similarly to UNet architecture, the bottleneck was introduced and
serves as the critical bridge between the encoder and the decoder. Additionally,
skip connections were incorporated, and the decoder comprises two consecutive
dynamic blocks and three consecutive MultiKAN blocks for upsampling. We use
binary cross-entropy loss for the loss function.

3 Experiments

Datasets and Implementation Detail. We performed experiments using
our Implicit U-KAN 2.0 on three distinct 2D medical imaging datasets, namely
Kvasir-SEG [10], ISIC Challenge (ISIC) [8] and Breast Ultrasound Images (BU
Images) [1]. These datasets encompass a wide range of data types and exhibit
substantial variability in terms of image dimensions, segmentation mask fidelity,
and overall dataset size. Kvasir-SEG contains 1,000 colonoscopy images (800 for
training, 200 for testing) at 256×256 for polyp segmentation. The ISIC Challenge
dataset has 1,279 dermoscopy images (990 training, 289 testing) at 512×512 for
skin lesion segmentation. The Breast Ultrasound Images dataset includes 647
images (518 training, 129 testing) at 256×256 for breast lesion segmentation.
For our 3D experiments, we used the Medical Segmentation Decathlon’s Spleen
dataset, which comprises 61 CT volumes (41 training, 20 testing) focusing on the
spleen. We implemented the Implicit U-KAN 2.0 model on an NVIDIA A100 40G
GPU for testing on the Kvasir-SEG dataset and ISIC Challenge, with batch sizes
of 15 and 3 respectively. For the Breast Ultrasound Images, an RTX 4070 Super
GPU was used with a batch size of 4. The model was trained for 500 epochs at a
learning rate of 0.0001 using early stopping.

3.1 Experiment results and Ablation Studies

2D segmentation In Table 1, we provide a comparison of the performance
of different segmentation methods across three datasets. We first compared
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Table 1. The comparison of segmentation performance across various methods for
three different datasets.

Dataset Metric U-Net
Trans
UNet

UNext USODE
Rolling
-Unet

MLLA
-UNet

U-KAN Ours

Dice ↑ 0.7741 0.7824 0.7583 0.7465 0.8078 0.6962 0.7331 0.8456
HD95 ↓ 44.75 37.97 41.12 45.20 33.74 53.62 48.40 25.26
Acc. ↑ 0.9023 0.9064 0.8926 0.9031 0.9278 0.8791 0.8949 0.9134
IoU ↑ 0.4857 0.5142 0.4657 0.4264 0.5705 0.3574 0.4207 0.6396

Kvasir
-SEG

F1 ↑ 0.6074 0.6259 0.5821 0.5506 0.6585 0.4653 0.5289 0.7490
Dice ↑ 0.9091 0.9233 0.9155 0.8998 0.9195 0.9243 0.9190 0.9330
HD95 ↓ 15.86 10.48 14.25 24.90 9.67 10.09 12.45 7.61
Acc. ↑ 0.9402 0.9505 0.9448 0.9334 0.9497 0.9514 0.9485 0.9577
IoU ↑ 0.8044 0.8339 0.8159 0.7854 0.8238 0.8350 0.8244 0.8513

ISIC

F1 ↑ 0.8784 0.9009 0.8885 0.8673 0.8934 0.9005 0.8924 0.9128
Dice ↑ 0.7833 0.8117 0.7812 0.7573 0.8187 0.7739 0.8140 0.8397
HD95 ↓ 37.39 26.02 30.47 39.24 20.86 32.39 27.47 24.07
Acc. ↑ 0.9498 0.9463 0.9548 0.9433 0.9584 0.9493 0.9587 0.9603
IoU ↑ 0.4969 0.5673 0.4891 0.4343 0.5762 0.4750 0.5599 0.6132

BU
Images

F1 ↑ 0.5951 0.6562 0.5882 0.5470 0.6613 0.5768 0.6516 0.7025

with the baseline model U-Net [22], USODE [4] and U-KAN [12]. In addition,
we compared with the U-KAN-like structure method UNeXt [23] and Rolling-
Unet [15]. We also compared our method with the well-known transformer method
TransUNet [21] and state-of-the-art mamba like method MMLA-UNet [11]. We
report our performance in terms of Dice, HD95, Accuracy (Acc.), IoU, and F1
Score. Our proposed method consistently outperforms other segmentation models
across multiple datasets, with improvements in key metrics such as Dice score,
HD95, accuracy, and F1 score. On the Kvasir-SEG dataset, our method achieves a
Dice score of 0.8456, representing an improvement of 14.6% to 21.5% over U-KAN
(0.7331) and USODE (0.7465), respectively. In terms of HD95, we achieve a 47.7%
reduction (from 48.40 to 25.26), demonstrating superior boundary accuracy. We
also show improvements in accuracy (up to 5.5% over MLLA-U-Net) and F1
score (41.8% improvement over U-KAN). On BU images, our model achieves a
Dice score of 0.8397, improving by 3.2% over U-KAN (0.8140), with the F1 score
and IoU also showing improvements ranging from 7.8% to 9.5%.

These results highlight the key strengths of our method: superior segmentation
precision and boundary delineation. The significant improvements in HD95,
particularly a 35.7% reduction over U-Net, show that our method better cap-
tures the fine details of the segmented regions. Additionally, the efficiency of our
model, with constant memory costs and GPU-based training, ensures scalability,
unlike traditional U-Net-based models that struggle with memory consumption
and training time. Overall, our model demonstrates superior performance with up
to 40% improvement across multiple datasets, making it a state-of-the-art
solution for medical image segmentation.
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GTOursU-Net USODE MLLA-UNetUNeXt U-KANRolling-Unet

(a
)

(b
)

(c
)

TransUNet

Fig. 2. The visualisation of the 2D segmentation task across the three datasets: (a)
Kvasir-SEG [10], (b) ISIC Challenge [8], and (c) Breast Ultrasound Images [1].

Table 2. Comparison of 3D seg-
mentation on Spleen dataset.

Method Dice
U-Net 3D 0.9021

U-KAN 3D 0.9591
Ours 0.9687

Table 3. Comparison between different noise
levels in terms of Dice Socee

Method ISIC Challenge
0.0 0.2 0.4

U-KAN 0.9190 0.4064 0.4064
Ours 0.9330 0.9225 0.9079

Figure 2 demonstrates that our method achieves cleaner, more precise seg-
mentations closely matching GT labels across all datasets. While Rolling-U-Net
performs well, it shows minor detail inaccuracies. Other methods are less accurate,
often missing key structures or creating fragmented regions, underscoring the
superior performance of Implicit U-KAN 2.0.

3D segmentation. We implemented both our method and U-KAN in 3D
version. From the Table 2, we observe that our proposed Implicit U-KAN 2.0
method significantly outperforms both U-Net 3D [5] and U-KAN 3D. Specifically,
our method achieves a Dice score of 0.9687, which is notably higher than the
0.9021 achieved by U-Net 3D and also surpasses U-KAN 3D’s score of 0.9591.
This result underscores the superior segmentation performance of our proposed
method across different dimensions, highlighting its effectiveness in achieving
higher accuracy, as reflected in the Dice score.

Ablation Studies. In the comparison of segmentation performance under
different noise levels on the ISIC Challenge dataset, our proposed Implicit U-
KAN2.0 outperforms U-KAN at all noise levels. At noise level 0.2, our model
achieves a Dice score of 0.9225, while U-KAN drops significantly to 0.4064,
demonstrating a 126% improvement. Even at the highest noise level (0.4), our
method still delivers a Dice score of 0.9079, compared to U-KAN’s 0.4064, showing
a 123% improvement. This highlights the advantage of our approach in handling
noisy data, with continuous feature evolution via SONO providing smoother
approximations and maintaining robust segmentation despite increased noise.
Unlike traditional models, which struggle with noisy data, our model excels in
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delivering stable and accurate segmentations, making it particularly suitable for
real-world clinical applications where image quality can be compromised.

4 Conclusion

We introduce implicit U-KAN 2.0. It leverages the SONO-Block and SONO-
MultiKAN Block, achieving superior accuracy across three benchmark datasets.
Our of second-order NODEs blocks enhances both efficiency and noise resistance,
while the MultiKAN layer blocks improves interpretability. Additionally, our
method outperforms both U-Net and U-KAN in 3D segmentation, highlighting
its robustness in handling complex medical image segmentation tasks.
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