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Abstract. The integration of multimodal data, particularly medical im-
ages and tabular data encompassing physician-assessed radiological fac-
tors, holds significant promise for enhancing clinical decision-making.
However, effective fusion of these heterogeneous data modalities remains
challenging due to their disparate feature spaces and the limitations of
current independent encoding approaches. We introduce FM-Bridge, a
novel methodology leveraging vision-language foundation model (VLM)
to address this challenge. Our approach capitalizes on the intrinsic image-
text embedding space alignment within VLMs to achieve robust multi-
modal fusion. We propose transforming clinical expertise-rich tabular
data into semantically coherent textual descriptions, subsequently utiliz-
ing the VLM’s text encoder to generate textual features explicitly aligned
with image features. This method facilitates a more semantically congru-
ent and effective fusion of medical image and tabular data, demonstrat-
ing potential for improved performance in downstream medical image
analysis tasks compared to conventional methods. Code is available at
https://github.com/HKU-MedAI/FM-Bridge.

Keywords: Multimodal Data Fusion · Medical Image Analysis · Tabu-
lar Data · Vision-Language Foundation Models.

1 Introduction

Proliferative hepatocellular carcinoma (HCC) poses a significant global health
challenge, necessitating accurate and timely diagnosis for effective treatment
planning and improved patient outcomes [28,13,1,25]. Medical imaging tech-
niques, such as CT, are indispensable tools in HCC diagnosis, providing crucial
visual information about lesions [22,15,24]. However, directly applying image
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Fig. 1. The illustration of conventional multimodal fusion methods and our proposed
FM-Bridge approach. Conventional independent encoding (left) results in disparate
feature spaces and limited fusion. FM-Bridge (right) overcomes this by using a VLM
to align image and text features derived from tabular data.

classification models to medical images for proliferative HCC diagnosis often
leads to suboptimal outcomes. This is primarily due to the subtle visual cues
and complex pathological features that characterize proliferative HCC, making it
difficult to distinguish from other conditions based solely on images. To overcome
these limitations, integrating multimodal data, particularly the synergistic com-
bination of medical images and tabular data incorporating physician-assessed
radiological factors, has emerged as a promising strategy [9,26,10,4]. Medical
images can offer detailed visual representations of anatomical structures and
indicate pathological alterations of lesions. Complementarily, tabular data, en-
riched with expert radiological factors, encapsulates valuable clinical expertise
and experiential knowledge that is directly relevant to image interpretation. This
combination promises a more comprehensive and robust diagnostic approach.

Despite the evident complementarity of these data sources, effectively fus-
ing information from heterogeneous modalities remains a significant challenge.
Existing methodologies frequently employ independent encoding pathways for
image and tabular data, embedding them into distinct feature spaces before at-
tempting fusion [19,18,6], as illustrated in the left part of Fig. 1. However, these
conventional approaches often treat the two modalities as independent entities,
failing to fully capitalize on the inherent inter-modality relationships and de-
pendencies. Furthermore, the resulting disparate feature spaces can hinder truly
effective and semantically rich information integration, limiting diagnostic accu-
racy.

To address these critical limitations and effectively leverage both image-based
visual information and human expert knowledge for accurate proliferative HCC
diagnosis, we propose FM-Bridge, a novel approach leveraging medical Vision-
Language Foundation Models (VLMs) [27,11] to bridge the modality gap be-
tween radiological images and tabular data of radiological factors. Our core mo-
tivation is to leverage the intrinsic alignment between image and text embedding
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spaces in VLMs, enabling the incorporation of pre-trained knowledge and facil-
itating robust multimodal fusion on the same semantic space. As shown in the
right part of Fig. 1, FM-Bridge transforms clinical expertise-rich tabular data,
encompassing physician-assessed radiological factors, into semantically coherent
textual descriptions. These descriptions are then processed by the text encoder
of a VLM, leveraging learnable prompts to generate textual features that are
explicitly aligned with image features extracted by the VLM’s vision encoder,
which is also fine-tuned with vision prompt tuning [12]. This novel alignment
process facilitates a more semantically congruent fusion of medical image and
tabular data and enables the model to leverage the complementary informa-
tion from both modalities. We demonstrate the effectiveness of FM-Bridge in a
comprehensive evaluation on a private dataset of proliferative HCC diagnosis,
showcasing its superior performance over conventional independent encoding
strategies and underscoring its potential for advancing multimodal medical AI.

2 Method

2.1 Overview of FM-Bridge

The overview of the proposed FM-Bridge is depicted in Fig. 2. Our framework
takes two primary inputs: a CT scan and pre-determined tabular radiological
factors, which are assessments made by expert radiologists. Initially, these tab-
ular factors are automatically transformed into natural language descriptions
using predefined templates. Subsequently, these textual descriptions are input
to the text encoder of a pre-trained VLM, while the corresponding CT scan is
simultaneously processed by the VLM’s image encoder. To preserve the VLM’s
pre-existing knowledge and the inherent alignment between its image and text
feature spaces, we employ prompt learning [14,12,29,30] for both the image and
text encoders instead of full fine-tuning. Finally, the resulting multimodal fea-
tures are then integrated and fused to derive a comprehensive representation,
which is used for proliferative HCC diagnosis prediction.

2.2 Textualization of Tabular Radiological Factors

To effectively integrate physician expertise encoded within tabular radiological
factors, we textualized tabular features into natural language descriptions. Ini-
tially, experienced radiologists assessed predefined radiological factors for each
CT scan and assigned binary scores (1 for presence, 0 for absence). This resulted
in structured tabular data representing expert evaluations of visual character-
istics. However, this tabular format is not directly interpretable by the text
encoder component of VLMs, which are designed to process natural language.
Therefore, we employed a rule-based textualization strategy to bridge this gap.
This strategy converted each feature and its score into a sentence using prede-
fined templates to indicate feature presence or absence. For instance, the feature
“Liver capsule retraction” with a score of ‘1’ was transformed into “Liver cap-
sule retraction is present,” while “Mosaic architecture” with a score of ‘0’ became



4 Y. Huang et al.

Patient ID xxxx

Large vascular thrombus 0

Liver capsule retraction 1

Mosaic architecture 0

Severe ischemia or necrosis 1

… …

Em
be

d

CLS
…

Large vascular thrombus is absent

Liver capsule retraction is present

Mosaic architecture is absent

… …

Image
Encoder

Text
Encoder

…

…

Radiological Descriptions
Radiological Features

Slice Features

Radiological Factors

Learnable Textual Prompt

Learnable Visual Prompt

CLS

Tr
an

sf
or
m
er

En
co

de
rL

ay
er

Tr
an

sf
or
m
er

En
co

de
rL

ay
er

Tr
an

sf
or
m
er

En
co

de
rL

ay
er

𝑳𝟏 𝑳𝟐 𝑳𝑵

Image Tokens
…

CT Slices

CT Scan

Severe ischemia or necrosis is present

𝑑!

𝑑 "

C
on

ca
t&

Fu
si
on

C
la
ss

ifi
er

𝑨!

𝑨"

FM-Bridge Aligned
Feature Space

Radiological Images

Fig. 2. The overview of the proposed FM-Bridge. The inputs are a CT scan and
tabular radiological factors. It consists of textualization of tabular radiological factors,
multimodal prompt learning, and multimodal feature fusion.

“Mosaic architecture is absent.” Applying these templates consistently generated
textual descriptions for each CT scan, encapsulating expert assessments in a lan-
guage format. This textualization offers key advantages. First, it makes tabular
data processable by VLM text encoders, leveraging their natural language under-
standing. Second, explicitly stating feature presence/absence in natural language
conveys nuanced clinical information in a semantically rich format accessible to
the model. This effectively injects expert knowledge from tabular data into the
multimodal learning, contributing to more informed diagnostic predictions.

2.3 Multimodel Prompt Learning

To effectively adapt the pre-trained VLM for proliferative HCC diagnosis while
leveraging its inherent knowledge, we employed multimodal prompt learning. Let
fimg and ftext denote the image and text encoders of the VLM, respectively, with
pre-trained parameters θimg and θtext (frozen during fine-tuning). The input CT
scan I ∈ RC×H×W×L is processed slice-by-slice. For the i-th slice, we divide
it into M patches and extract patch embeddings Xi ∈ RM×D using the frozen
embedding layer. To guide visual feature extraction, we prepend a learnable class
token ecls and V learnable visual prompts P v = {p1

v,p
2
v, . . . ,p

V
v } to the patch

embeddings, forming the input to the image encoder:

Ei
img = {ecls,P v,X

i} ∈ R(M+V+1)×D. (1)

We utilize deep prompting, inserting these visual prompts at each layer of the
image encoder, unlike shallow prompting which only prompts the first layer.
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Deep prompting enhances the model’s capacity to capture complex patterns
in medical images. The image encoder then outputs the latent visual feature
representation for each slice Zi

img = fimg(E
i
img; θimg), and the CT scan’s visual

feature representation is the set of slice features Ẑ img = {Z1
img,Z

2
img, . . . ,Z

L
img}.

For the text encoder, the input is derived from the N textualized radi-
ological factors T ∈ RN (obtained from tabular data as described in Sec-
tion 2.2). Each textual description is tokenized and embedded to obtain text
embeddings. For the j-th textual description, we denote its embedding sequence
as Y j = {tSOS , t

j
1, t

j
2, . . . , t

j
N , tEOS} ∈ R(N+2)×D, including start-of-sequence

(tSOS) and end-of-sequence (tEOS) tokens. Furthermore, we insert T learnable
textual prompts P t = {p1

t ,p
2
t , . . . ,p

T
t } into the text embeddings:

Ej
text = {tSOS ,P t, t

j
1, t

j
2, . . . , t

j
N , tEOS} ∈ R(N+T+2)×D. (2)

Similarly, the text encoder outputs the latent textual feature representation for
each description Zj

text = ftext(E
j
text; θtext), and the textual feature representa-

tion of the CT scan is the set of description features Ẑtext = {Z1
text,Z

2
text, . . . ,Z

N
text}.

2.4 Multimodal Feature Fusion and Objective Functions

To fuse visual and textual radiological factors for final diagnosis, we first compute
a similarity matrix S ∈ RL×N between them:

S = Ẑ img · Ẑ
⊤
text ∈ RL×N . (3)

This matrix captures the pairwise similarities between each CT slice’s visual
features and each textual radiological factor’s embeddings. Next, we derive at-
tention weights to emphasize relevant features. Textual attention weights Atext ∈
RN are computed by summing similarity scores for each textual feature across all
slices and applying softmax normalization. Visual attention weights Aimg ∈ RL

are computed similarly, summing scores for each visual feature across all textual
features and normalizing:

Atext = softmax

(
L∑

i=1

S[i, :]

)
, Aimg = softmax

 N∑
j=1

S[:, j]

 . (4)

These attention weights reflect the importance of each feature in the multimodal
context. We then aggregate textual and visual features using these weights to
obtain attention-weighted representations:

Ztext =

N∑
j=1

Atext[j] ·Zj
text, Z img =

L∑
i=1

Aimg[i] ·Zi
img. (5)

Finally, we concatenate Ztext and Z img, and pass the concatenated vector through
a linear layer and sigmoid activation to predict the proliferative HCC probability.
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We employ binary cross-entropy loss for classification. To encourage diverse
and informative textualized radiological factors, we add an orthogonal projection
loss (OPL) Lortho [23] as a regularization term. OPL encourages textual feature
representations to be well-separated in the feature space, preventing redundancy
and degradation of the textual features to a single point. The final objective
function is:

L = −E (yi log(ŷi) + (1− yi) log(1− ŷi)) + λ · Lortho, (6)

where yi and ŷi are the ground-truth label and predicted probability for the i-th
sample, and λ is a hyperparameter controlling the OPL’s weight.

Table 1. Proliferative hepatocellular carcinoma diagnosis results with different meth-
ods. The best results are highlighted in bold.

Method I T AUC F1

Tabular Data-only
MLP ✓ 0.668 ± 0.124 0.435 ± 0.127
FT-Transformer [5] ✓ 0.572 ± 0.118 0.204 ± 0.142
TabPFN [8] ✓ 0.627 ± 0.119 0.000 ± 0.000
Random Forest [21] ✓ 0.677 ± 0.113 0.293 ± 0.181
XGBoost [2] ✓ 0.667 ± 0.113 0.167 ± 0.161
CatBoost [20] ✓ 0.683 ± 0.104 0.167 ± 0.167

CT Image-only
ResNet-50 [7] ✓ 0.655 ± 0.114 0.483 ± 0.128
ConvNeXt [17] ✓ 0.692 ± 0.110 0.538 ± 0.133
ViT [3] ✓ 0.693 ± 0.117 0.518 ± 0.126
Swin Transformer [16] ✓ 0.687 ± 0.110 0.472 ± 0.146

Multi-model
Addition ✓ ✓ 0.671 ± 0.110 0.426 ± 0.173
Concatenate ✓ ✓ 0.680 ± 0.108 0.451 ± 0.145
FiLM [18] ✓ ✓ 0.713 ± 0.112 0.533 ± 0.131
DAFT [19] ✓ ✓ 0.714 ± 0.111 0.423 ± 0.169
TabMixer [6] ✓ ✓ 0.715 ± 0.108 0.436 ± 0.172
FM-Bridge ✓ ✓ 0.762 ± 0.102 0.567 ± 0.122

3 Experiments and Results

3.1 Experimental Settings

Tasks and Evaluation. We evaluated FM-Bridge on a private dataset for
proliferative HCC diagnosis collected from Guangzhou First People’s Hospital.
This dataset comprises CT images and corresponding tabular radiological fac-
tors (e.g., tumor capsulate state, mosaic architecture presence) for 337 patients,
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assessed by experienced radiologists. The task was to predict proliferative HCC
diagnosis based on both CT images and radiological factors, with pathological
diagnosis as the ground truth. The dataset includes 112 positive and 225 neg-
ative samples, with 104 randomly chosen patients reserved for testing and the
remainder for training and validation. We provided two representative images of
proliferative and non-proliferative HCC in Fig. 3. We used Area Under the ROC
Curve (AUC) and F1 score as primary evaluation metrics. To ensure robustness,
we report 95% confidence intervals calculated via bootstrap resampling (1000
iterations).
Comparative Methods. For comprehensive evaluation, we compare the pro-
posed FM-Bridge with different types of methods, including tabular data-only
methods, image-only methods, and multi-model methods. Tabular Data-only
methods included MLP, FT-Transformer [5], TabPFN [8], Random Forest [21],
XGBoost [2], and CatBoost [20], which are widely used in tabular data analy-
sis. Image-only methods comprised ResNet-50 [7], ConvNeXt [17], Vision Trans-
former (ViT) [3], and Swin Transformer [16]. For Multimodal methods, we in-
cluded simple fusion strategies (Addition, Concatenation) and other state-of-
the-art image-tabular fusion methods: FiLM [18], DAFT [19], and TabMixer [6].
For fair comparison in multimodal methods and FM-Bridge, we utilized the im-
age encoder from GenMedClip [11] as the image backbone and its text encoder
for encoding tabular features in FM-Bridge.

3.2 Experimental Results

Table 1 presents the experimental results. FM-Bridge achieves a superior AUC of
0.762 and F1 score of 0.567, significantly outperforming all comparative methods.
Both image-only and tabular data-only methods show reasonable performance,
highlighting the importance of both modalities. However, simple multimodal
fusion (Addition, Concatenation) underperforms, indicating that effective multi-
modal fusion is crucial. While methods like FiLM, DAFT, and TabMixer improve
upon simple fusion, their performance remains limited due to separate encoding
and less effective interaction mechanisms within misaligned embedding spaces. In
contrast, the proposed FM-Bridge can effectively encode the image and tabular
data into unified embedding space and learn the interaction between them more
effectively, which leads to better performance. Moreover, FM-Bridge uniquely
treats tabular data as an equally important input alongside images, rather than
a secondary modality, allowing for better utilization of tabular information and
contributing to its improved results.

3.3 Ablation Study

To further dissect the contribution of each component within FM-Bridge, we
performed ablation studies by systematically removing individual components.
Table 2 reveals that ablating either tabular data or image data results in a sub-
stantial performance decrease. This underscores the importance of both modal-
ities for accurate diagnosis. Notably, even when relying solely on tabular data
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Table 2. Ablation study of the proposed FM-Bridge on proliferative HCC diagnosis.

Method I T AUC F1

FM-Bridge ✓ ✓ 0.762 ± 0.102 0.567 ± 0.122
- w/o Tabular ✓ 0.669 ± 0.119 0.438 ± 0.150
- w/o Image ✓ 0.695 ± 0.095 0.424 ± 0.113
- w/o OPL ✓ ✓ 0.726 ± 0.106 0.523 ± 0.129
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Fig. 3. (a) Images show typical slices of proliferative HCC and non-proliferative HCC,
respectively. (b) Ablation study of the length of learnable visual and textual prompt
in FM-Bridge.

(w/o Image), FM-Bridge still surpasses other tabular-only methods in AUC. This
suggests that transforming tabular data into textual descriptions and encoding
them with the text encoder not only preserves the original expressive power but
may also enhance it by leveraging inherent knowledge within the foundation
model. Furthermore, the Orthogonal Prompt Loss (OPL) also plays a critical
role in performance, which could be attributed to its ability to prevent homoge-
nization of the learnable textual prompt. The impact of varying learnable visual
and textual prompt lengths is detailed in Fig. 3 b. Optimal performance was
observed with a visual prompt length of 10 and a textual prompt length of 6.
When the prompt lengths are too short, the model may not capture sufficient
information from the input data, while excessively long prompts may introduce
overfitting and hinder generalization.

4 Conclusion

This paper introduced FM-Bridge, a novel multimodal approach to proliferative
HCC diagnosis explicitly designed to overcome the limitations of current meth-
ods in bridging the modality gap between medical images and expert-derived
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radiological tabular data. By transforming tabular features into semantically co-
herent textual descriptions and employing prompt learning within a VLM frame-
work, FM-Bridge achieves robust fusion of image and tabular representations.
Our experimental results demonstrate that FM-Bridge significantly outperforms
existing methods in proliferative HCC diagnosis, validating the effectiveness of
our prompt-guided VLM approach for semantically congruent fusion. By mov-
ing beyond independent encoding strategies and fostering a more integrated
approach, FM-Bridge represents a significant advancement in multimodal med-
ical AI, offering a promising pathway for more accurate and clinically relevant
diagnostic systems.
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