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Abstract. Achieving equity in healthcare accessibility requires lightweight
yet high-performance solutions for medical image segmentation, par-
ticularly in resource-limited settings. Existing methods like U-Net and
its variants often suffer from limited global Effective Receptive Fields
(ERFs), hindering their ability to capture long-range dependencies. To
address this, we propose U-RWKV, a novel framework leveraging the
Recurrent Weighted Key-Value(RWKV) architecture, which achieves ef-
ficient long-range modeling at O(N) computational cost. The frame-
work introduces two key innovations: the Direction-Adaptive RWKV
Module(DARM) and the Stage-Adaptive Squeeze-and-Excitation Mod-
ule(SASE). DARM employs Dual-RWKV and QuadScan mechanisms
to aggregate contextual cues across images, mitigating directional bias
while preserving global context and maintaining high computational ef-
ficiency. SASE dynamically adapts its architecture to different feature
extraction stages, balancing high-resolution detail preservation and se-
mantic relationship capture. Experiments demonstrate that U-RWKV
achieves state-of-the-art segmentation performance with high computa-
tional efficiency, offering a practical solution for democratizing advanced
medical imaging technologies in resource-constrained environments. The
code is available at https://github.com/hbyecoding/U-RWKV.
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1 Introduction

Bridging the gap in healthcare accessibility requires not only breakthroughs in
medical technology but also solutions that can be widely deployed across diverse
clinical environments, especially in resource-limited settings [19]. In the field
of medical image segmentation, while convolutional neural networks (CNNs),
such as U-Net [20] and its variants [17,31,12,25,11,29,22,23], have achieved ini-
tial success through localized feature extraction, they fundamentally suffer from
inadequate global Effective Receptive Fields(ERFs) [16,7], as shown by U-Net’s
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Fig. 1: Performance comparison and Effective Receptive Field (ERF).

0.568 high-contribution ratio at 0.99 threshold (Fig. 1(b)). Lightweight yet high-
performing models with global ERF thus hold immense potential, offering a vi-
able and equitable pathway to democratize access to advanced medical imaging
technologies.

To address the limitations of existing methods [4,3,28,14,15,13,30], we pro-
pose U-RWKV, a novel lightweight framework that leverages the emerging
Recurrent Weighted Key-Value (RWKV) architecture [18]. RWKV achieves long-
range modeling at O(N) computational cost, offering a powerful foundation
for efficient medical image segmentation through its linear-complexity attention
mechanism. At the core of our U-RWKV are two key components: the Direction
Adaptive RWKV Module (DARM) and the Stage Adaptive Squeeze and Exci-
tation Module (SASE). These modules work synergistically to model long-range
spatial dependencies while maintaining computational efficiency, setting it apart
from traditional transformer-based or convolutional models, as show in Fig. 1(a).

The DARM is designed to dynamically aggregate contextual cues across the
entire image by introducing two innovative mechanisms: Dual-RWKV and
QuadScan. The core algorithm of RWKV, inspired by RNN-like WKV com-
putations, is inherently designed for processing one-dimensional sequential data.
However, this presents a challenge when adapting it to visual data, which lacks
an inherent sequential arrangement of components. To address this issue, we
propose the Dual-RWKV mechanism, which processes 2D feature maps as dual
1D sequences—one in the original order and the other in reverse order. This
bidirectional design ensures cross-orientation context preservation while elimi-
nating directional bias. By propagating information bidirectionally, Dual-RWKV
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captures multi-scale contextual dependencies, mitigating information loss in am-
biguous regions such as diffuse boundaries or corner-situated lesions.

On the other hand, the complex spatial relationships and diverse modalities
(e.g., CT, MRI) in medical imaging demand adaptive mechanisms capable of
capturing anisotropic features [26,24,27]. To meet this requirement, we intro-
duce QuadScan, a quad-directional scanning strategy that traverses the image
through four directional flows: left→right, right→left, top→bottom, and bot-
tom→top. Each image patch acquires contextual knowledge exclusively through
a compressed hidden state computed along its corresponding scanning path,
reducing computational complexity while preserving global context. This sys-
tematic integration of edge semantics from multiple directions achieve global
ERF, as shown in Fig. 1(b).

To further enhance the adaptability of U-RWKV, we introduce the Stage-
Adaptive Squeeze-and-Excitation Module (SASE). SASE dynamically adjusts
its architecture based on the stage of feature extraction. In early stages, SASE
employs dilated inverted bottleneck structures to preserve high-resolution fea-
tures, ensuring detailed spatial information is retained. In deeper layers, SASE
transitions to compact bottleneck designs to maintain computational efficiency
while capturing high-level semantic relationships. This stage-adaptive design en-
ables U-RWKV to generalize effectively across different datasets, accommodating
the intricate spatial correlations and semantic relationships inherent in medical
imaging modalities such as CT and MRI.

In summary, our main contributions are as follows: (I) We propose U-
RWKV, a lightweight framework balancing computational efficiency and seg-
mentation performance for resource-constrained settings; (II) We introduce two
innovations: (a) DARM, which uses Dual-RWKV and QuadScan to model
long-range dependencies efficiently while reducing directional bias; and (b) SASE,
which adapts dynamically to enhance the model’s robustness and generalization;
(III) Comprehensive experiments validate U-RWKV’s state-of-the-art perfor-
mance, efficiency, and adaptability across diverse medical imaging tasks.

2 Method

2.1 Architecture Overview

The proposed architecture introduces a novel U-shaped encoder-decoder frame-
work tailored for medical image segmentation, as depicted in Fig. 2(a). The
model is designed to efficiently process input images through a hierarchical struc-
ture that captures multi-scale features. The encoder progressively reduces the
spatial dimensions of the input while increasing the channels. It uses a series
of convolutional layers with 3 × 3 kernels and stride=2 for downsampling. The
decoder path aims to reconstruct the feature maps through a series of upsam-
pling operations, performed by transposed convolutions that gradually restore
the spatial resolution. This process is named ChannelFusion because it involves
two layers of CNNs. Each convolutional layer is followed by batch normalization
to ensure robust feature extraction and regularization.
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Fig. 2: Overview of the proposed U-RWKV; SASE Module and DARM

2.2 Stage-Adaptive SE Module (SASE)

The SASE block dynamically adapts to different stages of the network to com-
plement RWKV. Its architecture enhances the hierarchical feature transmission
to DARM. Specifically, this design uses lightweight pointwise convolutions and
inverted residual structures in shallow modes. Shallow mode refers to early stages
where the resolution is high and the feature channel ratio, calculated as the num-
ber of channels divided by the product of height and width, is large. In these
stages, the SERatio is set to 4, meaning the output channels are four times the
input channels. In deeper stages, where the ratio of channels to H×W is smaller
(C/H/W ≥ 1), we perform channel-wise splitting into 8 parts and then double
the channels, making the SERatio effectively 1/4. We also use depthwise sepa-
rable convolutions in these deeper modes to improve spatial feature extraction.
Using lightweight convolutions and residuals in shallow stages balances efficiency
and feature richness. This resolution-aware design enhances the feature informa-
tiveness of DARM.

2.3 Direction-Adaptive RWKV Module (DARM)

As discussed earlier, the fine-grained local features extracted by the encoder
need to incorporate long-range dependencies to enable effective fusion of local
and global information in the decoder. To achieve this, we propose DARM,
which refines the encoded features while preserving their spatial and channel-
wise relationships, leveraging the temporal and channel mixers from RWKV and
Vision RWKV.

Preliminaries: RWKV for vision data RWKV processes an input s ∈ RT×C ,
where C is the number of channels and T is the sequence length. First, layer nor-
malization (LN) stabilizes the features. The normalized features are projected
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Algorithm 1 DARM: Direction-Adaptive RWKV Module

Require: E ∈ RC×H×W (encoder features)
Ensure: Dpre ∈ RC×H×W (features for decoder)
1: Step 1: QuadScan Expansion and Spatial Mix
2: for each direction i ∈ {L → R, R → L, T → B, B → T} do
3: si = θi(E) ▷ Apply directional scan θi : RC×H×W → RT×C

4: s′i = spa(si) ▷ Spatial mix
5: end for
6: Step 2: QuadScan Merge
7: Ei = θ−1

i (s′i) ▷ Reconstruct 2D features from sequences
8: E′ = Average(Stack(E1, E2, E3, E4)) ▷ Pixel-wise averaging
9: Step 3: Channel Mixing

10: Dpre = cha(Flatten(E′)) ▷ Channel-wise enhancement
11: Return Dpre

into three components: receptance Rs, key Ks, and value Vs, via learnable ma-
trices WR,WK ,WV ∈ RC×C .

Borrowing from [9], we define spatial and channel mixing as follows: Spatial
mixing (spa(·)) is a token-wise aggregation:

spat = wkvt = Bi-WKV(Ks, Vs)t =

∑T
i=1,i̸=t e

− |t−i|−1
T ·w+kivi + eu+ktvt∑T

i=1,i̸=t e
− |t−i|−1

T ·w+ki + eu+kt

, (1)

where u and w are learnable parameters controlling local and non-local in-
teractions respectively. This enables dynamic importance adjustment of nearby
and distant tokens, ensuring robust feature aggregation.

Channel mixing (cha(·)) is a pointwise feed-forward network applied across
the channel dimension.

For vision data X ∈ RC×H×W , we transform spatial features into a sequence
using Vision2Seq(·), which is a more sophisticated process than simply reading
each row sequentially (Flatten(·)). The VRWKV process then combines spatial
and channel mixing:

VRWKV(X) = cha(Flatten(spa(Vision2Seq(X)))). (2)

For the DARM input, let E ∈ RC×H×W be the encoded features and Dpre ∈
RC×H×W the refined features. Since H and W are reduced due to encoder down-
sampling, we set the patch size in DARM’s patch embedding to 1, and the se-
quence length to H × W . As shown in Fig. 2(c), E first passes through the
QuadScan mechanism, which operates along spatial dimensions while keeping
channel information intact.
QuadScan Mechanism: This operation scans the feature map E along four
directions: left-to-right, right-to-left, top-to-bottom, and bottom-to-top. Each
directional scan produces a 1D sequence si via θi. These sequences undergo
spatial mixing through spa(·) to refine long-range dependencies. After process-
ing, the inverse functions θ−1

i reconstruct spatial features Ei, which are then
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averaged pixel-wise into the final feature map E′. The resulting feature map
is subsequently flattened into a sequence and sequentially fed into the channel
mix module, enabling the model to capture a comprehensive receptive field for
subsequent processing.
Dual-RWKV Mechanism. This core feature refinement module processes 2D
feature maps as two separate 1D sequences—one in the original order and the
other in reverse—without weight sharing between directions. This bidirectional
design preserves cross-orientation context while preventing directional bias. By
propagating information in both forward and backward passes independently,
Dual-RWKV captures richer spatial dependencies. When combined with Quad-
Scan, the model can capture complementary directional information, further
enhancing its robustness and adaptability.

Let the symbols be defined as above. The unified process of our Direction-
Adaptive RWKV Module (DARM) can be formulated as:

Dpre = cha
(
Flatten

(
Θ−1 (spa (s))

))
+ cha

(
Flatten

(
Θ−1 (spa (s←)))

))
(3)

3 Experiments and Results

3.1 Settings

Datasets. Our study utilizes diverse datasets. The BUSI dataset [1] consists
of breast ultrasound images from 600 female patients, with 780 images in total,
classified into normal, benign, and malignant. Kvasir [10] and ClinicDB [2] are
polyp-related endoscopic datasets. Kvasir has 1,000 manually-annotated polyp
images, and ClinicDB contains 612 static images from colonoscopy videos. The
ISIC 2017 and 2018 datasets [6] focus on skin diseases, with different numbers
of training and test images.
Metrics. In medical image segmentation, we commonly use the Dice Similarity
Coefficient (DSC) and the Intersection over Union (IoU) to evaluate perfor-
mance. Higher values of DSC and IoU indicate better segmentation accuracy.
Implementation Details. The training procedure follows the settings described
in [22,25], with the following modifications: training is conducted for 280 epochs
on a single NVIDIA 3090 GPU; the official Synapse dataset is used exclusively,
while for other datasets, a 70/30 split is applied for training and validation,
respectively; the RWKV model is initialized with weights from [9].

3.2 Comparison with State-of-the-Art Methods

We compare our U-RWKV model against several state-of-the-art methods. Ta-
ble 1 presents the Dice scores on five datasets, along with comparisons of the
number of parameters (in M) and FLOPs (in G) for different models, which re-
flect computational complexity. Our U-RWKV model achieves competitive per-
formance, attaining the highest average Dice score of 82.27, surpassing most
existing methods. Notably, the lightweight variant U-RWKV-s achieves a Dice
score of 80.06 with only 0.46M parameters, highlighting its efficiency.
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Table 1: Segmentation performances of competing methods in terms of Dice
score. Reported Params, GFLOPs, average Dice (Avg), and Dice scores per
dataset. Higher Dice values are better. Maximum values are highlighted in bold.

Methods params FLOPs Avg BUSI Kvasir Clinic ISIC’17 ISIC’18
U-Net [20] 34.53 65.52 81.48 79.58 87.65 90.97 89.87 86.99
TransUnet [4] 93.23 32.23 81.23 79.61 87.13 90.84 90.10 86.58
CMU-Net [25] 49.93 91.25 83.06 81.92 89.12 92.48 89.70 86.83
SwinUnet [3] 27.15 5.91 76.05 76.46 80.67 84.15 87.71 86.57

UNeXt [29] 1.47 0.57 80.18 80.47 85.11 88.76 89.60 86.80
Att-UNet [17] 4.91 9.45 81.48 79.61 87.13 91.77 89.57 86.86
MedT [28] 1.37 2.41 81.81 81.86 88.85 90.38 86.72 87.21
ConvUNeXt [11] 3.51 7.25 81.11 80.37 86.67 90.99 89.35 85.89
CMUNeXt [22] 3.14 7.41 82.13 81.66 87.82 91.21 89.85 86.77
TinyUnet [5] 0.48 1.67 80.45 77.42 87.32 90.37 89.03 86.87
U-RWKV-s 0.46 1.02 80.06 79.77 86.15 87.98 89.41 86.94
U-RWKV 2.97 7.28 82.27 82.34 88.17 90.58 90.13 87.26

Fig. 3: Visualization of segmentation results on four datasets: CVC-ClinicDB,
BUSI, Kvasir-Seg, and ISIC 2017. The orange contour lines represent the ground-
truth annotations of lesions, while the yellow contour lines indicate the segmen-
tation results produced by our model.

We evaluate U-RWKV on the Synapse multi-organ segmentation dataset.
Table 2 shows the Dice scores and Hausdorff Distance (HD95) for each organ,
along with the average scores across all organs. Our U-RWKV model achieves
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competitive performance, with an average Dice score of 80.64 and HD95 of
26.61. Notably, U-RWKV outperforms several state-of-the-art methods, includ-
ing TransUNet and MedT.

The synergy between RWKV’s long-range dependency modeling and SASE’s
stage-adaptive feature refinement is key to this performance. SASE dynamically
enhances lesion-specific features at different decoder stages—coarse-grained lo-
calization in early stages and fine-grained boundary precision in later ones. This
is evident in Fig. 3, where U-RWKV reliably handles diverse challenges: hetero-
geneous textures in BUSI, mucosal folds in Kvasir, and low-contrast boundaries
in ISIC. The ground truth (orange) and predictions (yellow) align closely, partic-
ularly for irregular structures, highlighting SASE’s role in preserving topological
consistency.

Table 2: Comparison of different
models on Synapse dataset.

Methods Dice↑ HD95↓

U-Net 77.10 29.97
TransUNet 77.54 38.78
CMU-Net 76.22 29.65

UNeXt 72.52 39.61
AttUNet 76.10 36.77
MedT 70.09 33.53
ConvUNeXt 78.55 26.89
CMUNeXt 77.95 24.43
TinyUnet 75.75 32.23

U-RWKV-s 71.12 45.36
U-RWKV 80.64 26.61

Table 3: IoU results of ablation studies on
BUSI, Kvasir and ISIC’17.

Ablation BUSI↑ Kvasir↑ ISIC↑ Avg.↑

Left→Right 69.61 77.91 81.65 76.75
Right→Left 69.08 77.56 82.26 76.61
Top→Bottom 69.04 78.87 82.23 77.02
Bottom→Top 68.05 78.22 81.77 76.43
L.→R.+R.→L. 69.73 77.22 81.90 76.64
T.→B.+B.→T. 69.73 78.35 81.98 76.98
L.→R.+T.→B. 69.38 77.74 82.26 76.77
R.→L.+B.→T. 68.86 78.75 81.92 76.86
w/o Dual RWKV 70.30 77.31 82.42 76.68
w/o DARM 66.73 76.55 81.62 74.97
w/o SASE 68.57 75.78 81.53 75.29
U-RWKV 71.01 79.58 82.27 77.62

3.3 Ablation Studies

We conduct comprehensive ablation studies, summarized in Table 3. The baseline
results show that combining multi-directional scans (e.g., L→R + R→L, T→B
+ B→T, etc.) improves IoU across datasets. Removing components such as Dual
RWKV or DARM causes notable performance drops (e.g., without DARM, the
average IoU decreases from 77.62 to 74.97). Importantly, the full U-RWKV,
which integrates SASE with DARM, achieves the highest average IoU of 77.62,
demonstrating that SASE on its own is not merely a variant but works syner-
gistically with DARM to enhance segmentation performance.

We further validate these findings through Effective Receptive Field analysis.
As shown in Fig. 1(b), U-RWKV achieves a 0.992 high-contribution area ratio at
0.99 threshold, significantly outperforming both the baseline U-Net (0.568) and
our model’s variants with ViT [8] or VMUnet’s [21]mamba bottlenecks (both
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0.946). This 74.6% improvement over U-Net and 4.9% advantage over the back-
bone variants confirms our architecture’s superior ability to focus activation en-
ergy on diagnostically relevant regions while maintaining global context aware-
ness, consistent with the IoU improvements observed in the component ablation
studies.

4 Conclusion

In summary, we propose U-RWKV, a framework that combines convolutional
features with DARM’s global dependency modeling, achieving a good balance
between efficiency and accuracy. We acknowledge that inference speed is slightly
slower than CNNs like UNeXt, and future work will focus on optimizing for
high-resolution settings and extending to 3D segmentation.
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