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Abstract. The rapid advancement of generative Al in medical imag-
ing has introduced both significant opportunities and serious challenges,
especially the risk that fake medical images could undermine health-
care systems. These synthetic images pose serious risks, such as diag-
nostic deception, financial fraud, and misinformation. However, research
on medical forensics to counter these threats remains limited, and there
is a critical lack of comprehensive datasets specifically tailored for this
field. Additionally, existing media forensic methods, which are primar-
ily designed for natural or facial images, are inadequate for capturing
the distinct characteristics and subtle artifacts of Al-generated medi-
cal images. To tackle these challenges, we introduce MedForensics, a
large-scale medical forensics dataset encompassing six medical modalities
and twelve state-of-the-art medical generative models. We also propose
DSKI, a novel Dual-Stage Knowledge Infusing detector that constructs
a vision-language feature space tailored for the detection of Al-generated
medical images. DSKI comprises two core components: 1) a cross-domain
fine-trace adapter (CDFA) for extracting subtle forgery clues from both
spatial and noise domains during training, and 2) a medical forensic re-
trieval module (MFRM) that boosts detection accuracy through few-shot
retrieval during testing. Experimental results demonstrate that DSKI sig-
nificantly outperforms both existing methods and human experts, achiev-
ing superior accuracy across multiple medical modalities.

Keywords: Medical Forensics - Medical Image Analysis - Trustworthy
Al in Medical Imaging - Healthcare Security - Dataset

1 Introduction

The rapid advancement of deep learning accelerated the integration of artificial
intelligence (AI) in medicine. However, challenges such as the high cost of med-
ical data collection, privacy regulations, and limited availability of annotated
medical datasets have hindered progress. Recently, generative Al techniques,
especially denoising diffusion models, have been utilized to generate realistic,
diverse, and true-to-distribution medical imaging data, to augment healthcare
model training [I5II3J27]. These Al-generated datasets have been beneficial in
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improving tasks like classification, segmentation, and cross-modal translation.
Despite these advancements, the increasing quality and volume of synthetic med-
ical images pose significant risks to healthcare systems. Prior studies [20/12] have
demonstrated that even medical experts can be misled by the high visual realism
of Al-generated images. Thus, developing reliable and effective methods to detect
these Al-generated medical images is crucial for mitigating risks and ensuring
patient safety.

While Al-generated image detection has been widely studied in natural and
facial images [T9I231252TIT7T6], few studies have focused on medical deepfakes.
Applying methods intended for natural or facial images to the medical domain
is suboptimal due to the unique nature of medical images. Al-generated medi-
cal images aim to replicate physiological phenomena and anatomical structures
[15U1312728)26]. Compared to natural or facial images, these forged medical im-
ages often contain more subtle and localized clues (e.g., irregular low-level tex-
tures, unrealistic anatomical and pixel statistics), which are less semantically
meaningful. Additionally, the variety of modalities and structures in medical im-
ages makes detection even more difficult. Current medical forensic methods [T12]
are still in the early stage, primarily addressing images manipulated by tradi-
tional tools or GANSs, but remain ineffective against the hyper-realistic images
produced by advanced Al models like Diffusion Models. In this paper, we focus
on detecting Al-generated medical images created by various state-of-the-art
medical generative models.

A major challenge in medical forensics is the lack of large-scale datasets of
Al-generated medical images, due to the diversity of medical modalities and the
complexity of generative models. To address this, we introduce MedForensics, a
large-scale dataset of high-quality medical images generated by twelve leading
models across six modalities, providing a key benchmark for medical forensics.
Additionally, we propose the Dual-Stage Knowledge Infusing Detector (DSKI),
designed to distinguish Al-generated medical images. In the training stage, a
cross-domain fine-trace adapter (CDFA) captures forensic clues in the spatial
and noise domains, using an inception module to extract multi-scale artifacts
and a constrained CNN to model low-level pixel statistics. In the testing stage,
a Medical Forensic Retrieval Module (MFRM) enhances detection performance
and scalability. Experimental results show that DSKI outperforms state-of-the-
art methods and human experts in detecting medical deepfakes, offering a cru-
cial solution to mitigate the risks posed by Al-generated images and safeguard
healthcare systems.

2 The Proposed MedForensics Dataset

2.1 Dataset Details

To advance the development of medical forensic detectors and assess their ability
to distinguish Al-generated from real medical images, we introduce MedForen-
sics, a large-scale dataset comprising 116,000 medical images, with an equal
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Table 1. Details of our proposed MedForensics dataset.

Model Modality Classification ~ Pairs Number Real Image Source
U-KAN-U Ultrasound Breast 5000 BUSI,UNS
U-KAN-E Endoscope Colorectum 5000 Kvasir, CVC, CV3D, ETIS
U-KAN-H Histopathology Histopathology 5000 GlaS, LC

SegGuidedDiff-M MRI Breast 5000 DBCM
SegGuidedDiff-C CT Neck-to-pelvis 5000 CT-ORG
Cheff X-ray Chest 5000 MaCHeX
EFN Ultrasound Heart 4000 CAMUS
MONAI-MGD MRI Brain 5000 BraTS
DiffEcho Ultrasound Heart 4000 CAMUS
ArSDM Endoscope Colorectum 5000 Kvasir, CVC, CV3D, ETIS
Hyper-GAN MRI Brain 5000 BraTS
ICVAE MRI Brain 5000 BraTS

number of real and Al-generated fake images. MedForensics spans six medi-
cal modalities: Ultrasound, Endoscopy, Histopathology, MRI, CT, and X-ray,
covering a diverse range of real-world forensic scenarios. We employ 12 state-
of-the-art (SOTA) models from nine medical image generation studies, includ-
ing U-KAN [I5], SegGuidedDiff [13], Cheff [27], EFN [24], MONAI-MGD [1¥],
DiffEcho [4], ArSDM [9], Hyper-GAN [29], and ICVAE [§]. Each generator pro-
duces 5,000 synthetic images, except for DiffEcho and EFN, which produce 4,000
images. Real images are primarily sourced from the corresponding generative
model’s training set to maintain a balanced distribution of real and fake images.
In cases where training sets were small (e.g., U-KAN-H’s GlaS dataset with
only 165 images), we supplement with images from larger datasets of the same
modality [BUGI3ITTI27IT4]. The dataset is standardized at the 256 x 256 resolution,
and the images are split into training and testing sets with an 80/20 split. With
its large volume, diverse modalities, and inclusion of advanced SOTA models,
MedForensics provides a comprehensive resource for developing and evaluating
medical forensic detection methods. Table [I] details the dataset composition,
while Figure [1] illustrates examples of the generated images.

2.2 Fake Medical Image Generators

Diffusion-based Model: Diffusion models have recently emerged as the most
advanced architecture in medical image generation. Notably, U-KAN [I5] in-
tegrates Kolmogorov-Arnold Networks (KANs) into the noise predictor of the
diffusion model, with three variants that generate highly realistic ultrasound,
endoscopy, and histopathology images, namely U-KAN-U, U-KAN-E, and U-
KAN-H. SegGuidedDiff [I3] enables anatomically controllable image generation
by adhering to a multi-class anatomical segmentation mask during each sampling
step. SegGuidedDiff-M and SegGuidedDiff-C generate high-quality breast MRI
and abdominal/neck-to-pelvis CT images. Chefl [27] utilizes a cascaded latent
diffusion model to generate state-of-the-art chest radiographs, while EFN [24]
employs Denoising Diffusion Probabilistic Models (DDPM) guided by cardiac
semantic labels to generate high-quality ultrasound images. MONAI-MGD, part
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Fig. 1. Visualization of Al-generated medical images from the proposed MedForensics
dataset, covering six imaging modalities and twelve generative models.

of the widely used MONALI [I8] library, generates brain MRI images. DiffEcho [4]
produces realistic echocardiography images, and ArSDM [9] applies an adaptive
refinement semantic diffusion model to generate colonoscopy images.

GAN-based Model: Over the past decade, Generative Adversarial Networks
(GANSs) have led to substantial advancements in the quality of image generation.
Hyper-GAN [29] constructs a multi-contrast MRI image translation model that
adapts to various MR contrast types, enabling high-fidelity brain MRI genera-
tion.

VAE-based Model: Variational Autoencoders (VAEs) learn a latent space to
encode and reconstruct data. ICVAE [8] separates the input data’s embedding
space from conditioning variables, ensuring that generated brain MRI features
are independent of conditioning factors, thus increasing output diversity.

3 Method

3.1 Overview of DSKI

As shown in Figure [2) DSKI is built upon the pre-trained CLIP [22], which has
been trained on an extensive dataset of 400 million image-text pairs, providing a
robust vision-language feature space suitable for a variety of downstream tasks.
CLIP has also demonstrated sufficient effectiveness in media forensics tasks [19],
which makes it an ideal foundation for our approach. While the original CLIP
space performs well in distinguishing the authenticity of natural images, its high-
level visual semantics are insufficient for medical image forensics due to the lack
of fine-grained details and medical-specific information. To address this, DSKI
performs a two-stage medical knowledge infusing to adapt the original CLIP fea-
ture space into an adequate, generalized medical forgery discrimination space.
The training stage is centered around the cross-domain fine-trace adapter (Sec-
tion , while the testing phase utilizes the forensic retrieval module (Section
to enhance detection accuracy further.



Toward Medical Deepfake Detection 5

Adapted Visual Encoder

ViT Block #
I 1-st I
)

o DFA A i
Training Medical Images

real /fake . .
Text Adapte
BERT [[CLS][ A [real [ medical [ image } W * e i ; W/

L Classifier Weight :
Training Stage ! Cross-Domain Fine-Trace Adapter (CDFA)

Testing Stage faW;

- Wa real ]
Adapted CLIP'S |
Visual Encoder fake [—] % Frozen
L i
Scores & Tuned
Test Image I,
@ MatMut
Adapted CLIP's Label
VisupalEnccder Encoder D addition
& L Labels Ln @ Weighting factor

Fa Ly
Selected Samples I2n

Fig. 2. Overview of the DSKI framework. The training stage employs a Cross-Domain
Fine-Trace Adapter (CDFA) to inject medical forensic knowledge into the CLIP back-
bone via spatial and noise feature streams. During testing, a Medical Forensic Retrieval
Module (MFRM) retrieves few-shot knowledge from a feature bank to enhance detec-
tion performance.

3.2 Training Stage: Cross-domain Fine-trace Adapter (CDFA)

Our training set includes real and fake medical images, each paired with nat-
ural language prompts (e.g., "A real/fake medical image"). The vanilla CLIP
employs the text encoder to convert the prompts P, into classifier weights W,
and the visual encoder extracts image features f. We introduce visual adapters
Ag,i)(~) and a text adapter A;(-) to fine-tune the pre-trained CLIP. Each visual
adapter (e.g., CDFA) is placed in parallel with the MLP in the i-th transformer
block. The CDFA has two streams that capture fine-grained forgery traces from
both the spatial and noise domains. In the noise domain, constrained convolution
layers and ReLU layer help learn abnormal pixel relationships while suppress-
ing semantic content. In the spatial domain, an inception module with parallel
convolutions (1x1, 3x3, 5x5) captures multi-scale forensic artifacts, which are
crucial for interpreting medical images [16]. The two streams are defined as fol-
lows:

f9 = Conv (ReLU ( ConstrainedConv (f(i))))a (1)
fr(f) = InceptionConv (ReLU (f(i)))’ (2)

where £ is the input to the visual adapter in the i-th transformer block, and
fs(i) , Ar(f) are the outputs from the spatial and noise streams. The outputs of
both streams are fused using a learnable scale factor A, forming the final medical
forensic feature:

FO =0+ A0, (3)
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The adapter output f () is added to the corresponding MLP. The text adapter
A4 (+) consists of two sequential linear layers applied after the text encoder. At
this point, we obtain the new image feature f’ and classifier weights W’. During
training, the weights of A,(-) and A;(-) are optimized using the binary cross-
entropy loss:

N
£0) = 5 D [y log () + (1~ ) log (1 — pa)] (1)
n=1

where N is the total number of training samples, y,, is the ground truth label
for the n-th sample (0 for real, 1 for fake), and p,, is the predicted probability
of the sample being classified as the positive class.

3.3 Testing Stage: Medical Forensic Retrieval Module (MFRM)

After the training stage, DSKI collects cross-domain, multi-scale artifacts to form
a comprehensive fine-grained view for medical image forensics. To enhance de-
tection robustness and accuracy, we design MFRM, inspired by [30]. The MFRM
is built upon a cache feature bank. Using the fully adapted CLIP model from the
training stage, we randomly select a small sample set I3, from the completed
dataset, containing n real and n synthetic medical images with corresponding
labels Ls,. The adapted visual encoder F, extracts the L2-normalized features
F, € R¥"*C | The ground-truth labels Lo, are converted into a binary vector
L, € R?"*2? with a one-hot encoder E;. F, and L; serve as keys and values,
forming the feature bank, which stores the new medical forensic knowledge ex-
tracted from the few-shot samples. Given a test image I, its L2-normalized
feature f, € R is extracted by the adapted CLIP visual encoder and is used
as a query in the MFRM to retrieve relevant information from the feature bank.
The affinity scores A, € R'*?" between the query and the keys are computed
as:

Ag = exp (—a (1 - faFg)) , (5)

where « is a modulation hyperparameter. The prediction of the MFRM can be
obtained with A4 L. Then, the knowledge retrieved from the MFRM is combined
with prior knowledge (f, W1 € R*2 where W, is the adapted classifier weights)
from the adapted CLIP model to yield the final logits:

Pf = 5A5Lb + faWz,zTa (6)

where [ is the residual ratio. This retrieval-based MFRM not only enhances
synthetic medical image detection by integrating new knowledge without re-
training, but also provides scalability for our model. As new medical image
synthesis frameworks emerge, DSKI can seamlessly integrate few-shot, newly la-
beled samples into the feature bank during testing, boosting its ability to detect
fake images from new frameworks.



Toward Medical Deepfake Detection 7

Table 2. Cross-modal detection Acc/AP of compared methods on the MedForensics
dataset. The bold value indicates the best performance.

Methods Ultrasound Endoscope Histopathology MRI CT X-ray Mean
UniFD [19] 85.7/78.8  80.8/86.7  84.2/78.2  61.6/54.5 54.6,/66.1 63.6/67.4  71.8/72.0
AEROBLAD [23] 73.1/65.8  68.7/73.9  55.6/51.4  64.8/81.6  56.3/56.8  57.9/56.6  62.7/64.4
NPR [25] 71.8/76.5  56.2/58.4  75.4/74.7  51.5/56.1 74.7/73.3  52.2/63.7  63.6/67.1
F3-Net [21] 72.3/77.2 70.8/71.5 59.8/64.3  55.9/57.8  65.6/72.3  53.5/58.0  63.0/66.9
DFH [2] 72.8/73.5  62.4/683  75.2/72.4  59.3/583  67.2/70.3  64.8/64.7  67.0/67.9
RECCE [T7] 59.8/62.3  54.7/61.0  64.6/69.7  69.0/69.5  51.4/62.8  63.3/85.1 60.5/68.4
MedNet [T] 63.2/60.7  58.3/54.5  64.3/62.3  70.9/68.7  69.7/69.4  64.4/66.7  65.1/63.7
Ours 98.9/93.4 91.9/91.4 97.8/93.8 84.9/89.1 92.7/93.6 83.4/91.6 91.6/92.2

4 Experiments

4.1 Experiments Setup

We evaluated the performance of our proposed method on the MedForensics
(see Section 2). The compared methods fall into three categories: state-of-the-
art natural image forensics (UniFD [19], AEROBLADE [23], NPR [25]), facial
image forensics (F3-Net [21I], RECCE [7]), and medical image forensics (MedNet
[1], DFH [2]). All compared methods were trained on the MedForensics training
set for fair comparison. We evaluated all models on the MedForensics dataset
using Accuracy (Acc) and Average Precision (AP), following standard media
forensics protocols.

Implementation Details. We initialize the backbone (ViT-L/14) using weights
provided by [22], and the remaining parts are randomly initialized. We train the
model for 50 epochs with a batch size of 32 on 4 NVIDIA GTX3090 GPUs. We
adopt SGD as the optimizer, with a momentum of 0.9, a weight decay of 0.005,
and an initial learning rate of le-4. Meanwhile, the visual adapters are placed
in the ViT blocks at i = 7,15,23. a and 8 are set to 0.1 and 10 for blending
adjustment. In testing, the number of selected samples n is empirically set to 16.

4.2 Comparison Results

Quantitative Results Comparison. Table[2]summarizes the detection perfor-
mance of different methods across various modalities. Thanks to the dual-stage
aggregation of medical forensic knowledge, DSKI significantly outperforms other
methods in all modalities and metrics. Specifically, DSKI shows an improvement
of over 20% in Acc and AP compared to UniFD [I9] using the original CLIP
feature space. Unlike methods [1l2], which suffer degraded performance in de-
tecting fake images (with relatively poor quality) from outdated GANs, DSKI
handles a broader range of architectures and outperforms these methods by a
significant margin.

Turing Test (Blinded Expert Evaluation). To evaluate the real-world ap-
plicability of our method, we conducted a Turing test with three medical special-
ists—a radiologist, a pathologist, and a gastroenterologist. We randomly selected
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Table 3. Blinded expert evaluation: human vs. DSKI performance.

Detectors Ultrasound, MR, CT, X-ray Histopathology = Endoscope
Radiologist 72.3/78.7 - -
Pathologist - 74.1/78.9 -

Gastroenterologist - - 68.5/72.0
DSKI 89.8/90.1 95.8/93.7 92.0/90.7

50 synthetic and 50 real images from each modality in the MedForensics dataset
and asked the experts to assess their authenticity. Table |3 shows that the ex-
perts had difficulty distinguishing real from fake images due to the similarity in
pathological features. In contrast, our DSKI effectively identified the fake images
by capturing low-level medical forgery artifacts.

4.3 Ablation Study

We conducted ablation experiments on the core components (Table . Integrat-
ing both modules significantly enhances performance. Each component plays a
distinct role: CDFA captures fine-grained artifacts during training, while MFRM
utilizes a retrieval mechanism to inject medical forensic knowledge from few-shot
samples during testing. Table [f] summarizes the evaluation of different CDFA
feature streams, with the full configuration achieving optimal results. We also
tested the DSKI’s scalability on 1,000 fake UWF fundus images generated by an
unseen framework [10] and 1000 real images. DSKI demonstrated strong perfor-
mance (Acc = 86.6%, AP = 89.4%) even without adding new samples. Adding
a few extra samples to the feature bank improved Acc by 2.1% and AP by 2.7%,
showcasing its scalability to emerging threats.

Table 4. Ablation study for core compo- Table 5. Ablation study for feature

nents (CDFA and MFRM) in DSKI. streams (spatial and noise) in CDFA.
CDFA MFRM  Acc AP Spatial Noise  Acc AP
X X 70.9 726 X X 75.3 789
v X 86.0 89.8 v X 80.3 824
X v 75.3 789 X v 82.6 83.3
v v 91.6 92.2 v v 91.6 92.2

5 Conclusion

This paper tackles the growing threat of Al-generated medical deepfakes with
two key contributions. First, we introduce MedForensics, a high-quality, large-
scale dataset for medical forensics, covering six modalities and generated by
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twelve state-of-the-art models. Second, we propose the Dual-Stage Knowledge
Infusing (DSKI) detector, a two-stage method that enhances synthetic medical
image detection. Experimental results show that DSKI outperforms both state-
of-the-art methods and human experts across multiple modalities, offering a
more robust solution for detecting medical deepfakes. This work facilitates the
development of trustworthy healthcare systems by providing a comprehensive
dataset and an effective detection framework.
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