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Abstract. Medical image segmentation, particularly in multi-domain
scenarios, requires precise preservation of anatomical structures across
diverse representations. While deep learning has advanced this field,
existing models often struggle with accurate boundary representation,
variability in organ morphology, and information loss during downsam-
pling, limiting their accuracy and robustness. To address these chal-
lenges, we propose the Context Enhancement Network (CENet), a novel
segmentation framework featuring two key innovations. First, the Dual
Selective Enhancement Block (DSEB) integrated into skip connections
enhances boundary details and improves the detection of smaller or-
gans in a context-aware manner. Second, the Context Feature Attention
Module (CFAM) in the decoder employs a multi-scale design to main-
tain spatial integrity, reduce feature redundancy, and mitigate overly
enhanced representations. Extensive evaluations on both radiology and
dermoscopic datasets demonstrate that CENet outperforms state-of-the-
art (SOTA) methods in multi-organ segmentation and boundary detail
preservation, offering a robust and accurate solution for complex medi-
cal image analysis tasks. The source code is publicly available at https:
//github.com /xmindflow/cenet.
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1 Introduction

Medical image segmentation, driven by advancements in deep learning and com-
puter vision, is a critical tool for extracting semantically meaningful informa-
tion from raw medical datasets. It enables the precise pixel-wise delineation of
anatomical structures, organs, and lesions, which are often characterized by di-
verse shapes, appearances, and pathological conditions [1]. This capability is
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essential for clinical applications and computer-aided diagnosis systems. Among
the most prominent approaches for segmentation are Fully Convolutional Neural
Networks (FCNs), particularly the U-Net architecture [20] and its variants. These
models leverage an encoder-decoder structure to capture multiscale representa-
tions: the encoder extracts contextual information, while the decoder upsamples
compressed features to produce precise, localized predictions. Skip connections
further enhance this process by preserving fine-grained spatial details [18], such
as boundaries, and enabling the decoder to reconstruct predictions more accu-
rately using high-quality, contextualized features from the encoder.

Despite their strengths, Convolutional Neural Networks (CNNs) inherently
struggle to model global contextual relationships due to the limited receptive
field of convolutional kernels. This limitation often leads to suboptimal perfor-
mance in multiscale segmentation tasks involving complex structures [22]. To
address this, various strategies have been proposed, including deformable con-
volutions [2], dilated convolutions [8], spatial pyramid pooling [6], and the in-
tegration of attention mechanisms into high-level semantic feature maps [23].
More recently, the Vision Transformer (ViT) [7] has emerged as a promising
alternative, utilizing self-attention mechanisms to effectively model long-range
dependencies and achieve SOTA performance. However, while ViTs excel at cap-
turing global context, they often underperform in modeling local representations
and context. Additionally, their quadratic computational complexity makes them
inefficient for large-scale applications [12].

Despite advances in CNNs and Transformer networks, their hierarchical struc-
tures, reliance on downsampling, and self-attention mechanisms often compro-
mise boundary details and fine-grained semantic representation, limiting their
ability to capture multiscale features essential for complex organ and lesion
morphologies in medical images. Although hybrid CNN-Transformer architec-
tures [5,9,13] and localized self-attention mechanisms [4,10] have been explored,
their focus on global representations and fixed receptive fields restricts accu-
rate segmentation of deformable structures across scales. Many approaches, such
as [27], focus on body features over edge information, which is crucial for accu-
rate segmentation and detail reconstruction. While studies like [17,14] separately
integrate fine-grained features (e.g., boundaries), the absence of proper control
mechanisms often results in noise, decoder-stage degradation, and inefficient net-
work learning with strong inductive bias.

To address these challenges, we propose the Context Enhancement Network
(CENet), a novel framework for medical image segmentation. @ The Dual Se-
lective Enhancement Block (DSEB) refines fine-grained features by leveraging
coarse guidance from the previous decoder, amplifying salient regions while fil-
tering irrelevant information to maintain contextual balance. @ The decoder
includes the Context Feature Attention Module (CFAM), which uses depth-wise
dilated convolutions and a context-aware gating mechanism for multiscale fea-
ture representation while addressing over-enhancement through adaptive rectifi-
cation. ® Evaluations on radiology (Synapse, ACDC') and dermoscopic datasets
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(PH?, HAM10000) show that CENet outperforms SOTA methods in precise and
context-aware segmentation.

2 Method

In this study, we propose a novel Context Enhancement Network (CENet) de-
signed to enhance feature representation and improve segmentation accuracy
by leveraging hierarchical feature extraction and refined contextual information
to effectively capture global contextual dependencies and local spatial details.
The network is systematically structured into three key components: a Pyramid
Vision Transformer V2 (PvT-V2) [27] backbone for multi-scale feature extrac-
tion, DSEB to contextually enrich skip connections, and CFAM for multi-scale
representation and semantic feature refinement. The overall architecture of the
proposed method is illustrated in Figure 1.
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Fig.1: The Contextual Enhancement Network (CENet) uses a pretrained en-
coder to generate multi-resolution features, processed by the DSEB as skip con-
nections. The decoder refines these features via the CFAM, which includes a
CCU, MCA, wNLB, and MLP.



2.1 Dual Selective Enhancement Block (DSEB)

The DSEB improves CENet’s skip connections for precise, boundary-sensitive
medical image segmentation. After concatenating encoder features with upsam-
pled CFAM outputs (using EUC Block [19]) as decoder signals, the input is
processed through two stages: the Feature Edge Amplifier (FEA) and Differen-
tial Attention (DiffAtt) [29]. The FEA enhances skip connection feature maps
by refining edges and spatial details crucial for boundary detection and the lo-
calization of small structures. It begins by performing multi-scale downsampling
D(F, s) and upsampling U(F, s) on the input feature map F, defined as:

Ful = U(D(F, 81), 80)7 Fug = U(D(F, 32)7 So), (1)

where s; = 0.75, so = 0.5, and sgp = 1.0 are the scales. The difference between
these upsampled features isolates refined edge details, computed as Feqge =
| Fy1—F2|. These features are added back to the original feature map F', weighted
by A € R, resulting in the enhanced feature map:

F = F + AFoqge. (2)

The DiffAtt, inspired by NLP, reduces attention noise and selectively enhances
meaningful context from the concatenated input features. Query and key vec-
tors are split into two groups, and separate attention maps are computed. By
subtracting these maps, issues such as imbalanced token importance in visual
contexts (e.g., boundary regions or small structures) are addressed, while redun-
dant attention is removed. The refined attention weights are combined with the
value vector, reducing irrelevant context and focusing on critical structures, in-
cluding fine details like edges. By combining FEA and DiffAtt, DSEB improves
feature detail, reinforces localized boundaries while highlighting salient context,
surpassing irrelevant regions, and improves segmentation of intricate structures,
achieving better overall accuracy.

2.2 Contextual Feature Attention Module (CFAM)

The CFAM, a Transformer-based decoder, improves hierarchical feature process-
ing in CENet while avoiding over-enhanced representations. It refines features
through four interconnected components for coherent information flow. First,
the Channel Calibration Unit (CCU) processes the input F € RZxWx¢
to recalibrate channel-wise features, enhancing their capacity to capture di-
verse characteristics for precise segmentation. The CCU employs Global Multi-
Aspect Pooling (G-MASP), combining average pooling (Pavg(F)), max pooling
(Pmax(F)), and standard deviation pooling (Pstqa(F')) to generate a global de-
scriptor g € R3¢, This descriptor drives a channel-wise attention mechanism
that reduces the channel capacity to C and adaptively reweights feature maps,
prioritizing significant channels for improved diversity and representation. The
CCU’s formulation is given as:

g = [Pavg(F);PmaX(F);,Pstd(F)} 5

s — o (fin1 (GELU (fia(e)), F' = Fos, ®)
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where s € RC is weights, F’ € RT*WXC g the reweighted output, ® is point-
wise multiplication, f1x1 is point-wise convolution, [;] is concatenation, and o is
sigmoid.

Following the CCU, CFAM utilizes the Multi-scale Contextual Aggrega-
tor (MCA) to refine F’ by capturing spatial context across multiple scales. The
input F' € REXHXW ig split into four parts: F/ € REHIXW where FY, F}, F}
share equal channel dimensions (C; = Cy = Cs), and F) contains the less than
10 percent of all the channels, ensuring Cy + Cy + C3 + Cy = C. Most channels
are allocated to the first three branches for the convolution operations, while the
fourth branch handles global patterns via average pooling. The splits Fy, Fy, F
are processed with parallel dilated depth-wise convolutions (f4;) using dilation
rates (e.g., 3, 5, and 8), respectively, while F; undergoes average pooling. The
outputs are concatenated and refined through a f141 convolution with SiLLU ac-
tivation. A context-aware gating mechanism then adjusts feature importance,
suppressing redundancy and emphasizing salient features, resulting in robust
multi-scale representations for improved segmentation. The MCA is expressed
as:

Fear = [de(F{),fds (F2/)7fds(F?ﬁ)acavg(on]

e , o (4)
Fuca = (SILU(fix1(Feat)) © SILU(fix1(F"))) + F,

where Cq, 4 represrnts channel-wise average pooling, fq, denotes the depth-wise
convolution operator with a kernel size of k x k and dilation rate dy € {6,8,12}.

To adjust feature enhancement based on the accumulation of the noise from
overly enhanced representations that come from previous layers and correspond-
ing DSEB blocks after feature aggregation, the weighted Non-local Block
(wNLB) prevents noise accumulation by modelling long-range spatial depen-
dencies and adaptively denoising features while preserving critical details. It uses
a self-attention mechanism with a learnable weighting parameter as a specific
instance of non-local (NL) operations [28]. The final stage of the CFAM uses an
enhanced MLP block, equipped with Spatial Calibration Module (SRM).
SRM applies Channel-wise Multi-Axis Spatial Pooling (C-MASP) using parallel
pooling (Cauvgs Cmaz, Csta) to create a spatial descriptor G € R3>*H>W _ This de-
scriptor is processed by parallel point-wise convolution that captures pixel-wise
relations, and depth-wise convolution ( gw) captures neighborhood interactions.
The combined output (S) recalibrates the feature map via element-wise multipli-
cation, then passes through a linear layer in the enhanced MLP for rich feature
representations. Formally:

S = J(flxl(G) + fgw(G))v G = [Caug(FMCA)v cmaz(FMCA)vcstd(FMCA)}a
Frecal = FMCA ® S.
(5)
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Fig. 2: Visual comparison of the proposed method versus others on the Synapse
dataset.

3 Experiments and Results

3.1 Datasets and Implementation Details

The performance of CENet was evaluated on four datasets. The model, de-
veloped in PyTorch and trained on an NVIDIA A100 GPU (80GB), used the
ImageNet-pretrained PVTv2-b2 encoder [27] at a 224 x 224 input resolution.
For the Synapse dataset (30 CT scans), 18 scans were used for training and
12 for validation [15], following TransUNet’s protocol [5]. Training involved 250
epochs, a batch size of 16, and an SGD optimizer with a 0.05 learning rate. On
the ACDC [3] dataset (100 cardiac MRI scans), the split was 70 training, 10 val-
idation, and 20 testing cases, with 150 epochs, a batch size of 12, and an Adam
optimizer (learning rate 0.0001). For skin lesion segmentation, the PH2 dataset
(80 samples) and HAM10000 (10,015 images) were trained for 100 epochs with
a batch size of 16 and an Adam optimizer (learning rate 0.0001), using prepro-
cessing/augmentation from [1]. The model also integrates BDoU Loss [24].

3.2 Results

Radiology: The performance of CENet on radiological datasets was evaluated,
with Table 1 presenting the quantitative results on the Synapse dataset using
DSC and HD metrics. Our approach significantly outperforms existing CNN-
based methods. CENet also shows enhanced learning capabilities compared to
Hybrid models, with improvements of 0.29% over MSA2Net, respectively. These
results underscore CENet’s ability in segmenting various organs. Figure 2 pro-
vides a visual representation of CENet’s performance in segmenting various or-
gans, demonstrating CENet’s accuracy in multi-scale segmentation of the kid-
neys, pancreas, and stomach. Furthermore, Table 2 emphasizes the effectiveness
of our method against SOTA approaches on the ACDC dataset for cardiac seg-
mentation in MRI images. CENet achieves the highest average DICE score of
92.18%. Moreover, CENet excels in all three organ segmentation tasks, regardless
of morphological variations.
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Table 1: Evaluation results on the Synapse dataset (blue indicates the best and
red the second best results).

. X . . . ’ Average
Methods Params |FLOPs | Spl. RKid. LKid. Gal. Liv. Sto. Aor. Pan. 'DSCT 95T
R50 U-Net [9] 3042 M |- 85.87 78.19 80.60 63.66 93.74 74.16 87.74 56.90| 74.68 36.87
TransUNet [5] 96.07 M |88.91 G|85.08 77.02 81.87 63.16 94.08 75.62 87.23 55.86|77.49 31.69
Swin-UNet [1] 27.17 M [6.16 G |90.66 79.61 83.28 66.53 94.29 76.60 85.47 56.58|79.13 21.55
HiFormer-B [9] 25.51 M [8.05 G |90.99 79.77 85.23 65.23 94.61 81.08 86.21 59.52|80.39 14.70
VM-UNet [21] 44.27 M |6.52 G |89.51 82.76 86.16 69.41 94.17 81.40 86.40 58.80(81.08 19.21
PVT-EMCAD-B2 [19]/26.76 M [5.60 G |92.17 84.10 88.08 68.87 95.26 83.92 88.14 68.51|83.63 15.68
MSA?Net [13] 112.77 M|15.56 G|92.69 84.24 88.30 74.35 95.59 84.03 89.47 69.30|84.75 13.29
2D D-LKA Net [2] 101.64 M|[19.92 G|91.22 84.92 88.38 73.79 94.88 84.94 88.34 67.71|84.27 20.04
CENet (Ours) ‘33.39 M ‘12.76 G‘94.58 86.33 91.12 68.10 96.19 83.89 89.56 70.54‘ 85.04 8.84
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Fig.3: Qualitative comparison of CENet and previous methods across skin
benchmarks.

Dermoscopy: Table 2 evaluates our proposed network on two skin lesion seg-
mentation datasets using DSC and ACC metrics. CENet outperforms CNN-
based, Transformer-based, and hybrid methods, demonstrating superior perfor-
mance and generalization. It surpasses Swin-Unet [16], U-Net [20], and UC-
TransNet [25], achieving DSC score improvements of 0.58% and 1.45% on PH?
and HAM10000 datasets, respectively. Moreover, Figure 3 showcases CENet’s
superiority in capturing intricate structures and producing precise boundaries
through effective boundary integration.

Ablation Study. To evaluate CENet’s components, ablation studies were con-
ducted to assess their efficiency, performance, and placement within the DSEB
and CFAM modules (Table 3). Results show that optimal performance occurs
when the wNLB is positioned at the end of the MCA and CCU, while the Dif-
fAttn and FEA operate in parallel within the DSEB, outperforming alternative
configurations. Feature analyses (Figure 4) on the ACDC and PH? datasets
further demonstrate that in the first row, attention maps before applying the



Table 2: Evaluation results on the skin benchmarks (PH? and HAM10000) and
ACDC dataset.

Methods PH? HAM10000 Methods aDSC| RV MYO LV

DSC ACC||DSC ACC R50+UNet [9] 87.55 |87.10 80.63 94.92
U-Net [20] 89.36 92.33|91.67 95.67 R50+AttnUNet [5] || 86.75 |87.58 79.20 93.47
TransUNet [5] 88.40 92.00||93.53 96.49 TransUNet|5] 89.71 |88.86 84.53 95.73
Swin-Unet [1]  ||94.49 96.78/(92.63 96.16 ViT+CUP [5] 81.45 [81.46 70.71 92.18
DeepLabv3+ [6] [|92.02 95.03|(92.51 96.07 Swin-UNet [4] 90.00 |88.55 85.62 95.83
Att-UNet [18] 90.03 92.76 ||92.68 96.10 R50+ViT+CUP [5]|| 87.57 [86.07 81.88 94.75
UCTransNet [25](]90.93 94.08 ||93.46 96.84 MT-UNet [26] 90.43 |86.64 89.04 95.62
MissFormer [11] [|85.50 90.50|/92.11 96.21 MISSFormer [11] 90.86 {89.55 88.04 94.99
CENet 95.04 97.19|94.71 97.04 CENet 92.18 190.90 89.63 95.99
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Fig. 4: Feature visualization in CENet: first row shows an ACDC sample, second
row a PH? example

DSEB are diffuse, failing to focus on key regions. After applying the DSEB,
attention becomes more focused, and the wNLB refines MCA multiscale recal-
ibrated feature maps by suppressing irrelevant details and emphasizing salient
regions. In the second row, the DSEB enhances feature focus at different CENet
levels, while the wNLB acts as a denoising mechanism, suppressing over-attended
details (e.g., hairs) and directing attention to critical regions.

Table 3: Effect of different components of CENet on PH? dataset. #FLOPs are
reported in (G), and P indicates the Parameters in Millions (M). All results are
averaged over three runs. The best results are shown in bold.

Components Performance
DSEB CFAM FLOPs (G)|Params (M) (DICE)
FEA DiffAtt|[wNLB CCU PH?
No No No No 7.53 29.86 94.08
Yes No Yes No 9.22 31.41 94.27
Yes  Yes No No 11.16 31.83 94.42
Yes  Yes Yes No 12.84 33.37 94.79
Yes  Yes Yes  Yes 12.84 33.39 95.04




CENet: Context Enhancement Network 9
4 Conclusion

The proposed CENet improves context-aware medical image segmentation with
a DSEB for boundary-sensitive and context amplification and a CFAM for mul-
tiscale representation and reduces feature redundancy. Evaluations demonstrate
CENet’s superior accuracy and boundary preservation over SOTA methods, pro-
viding a robust solution for complex segmentation tasks.
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