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Abstract. Acquiring images in high resolution is often a challenging
task. Especially in the medical sector, image quality has to be balanced
with acquisition time and patient comfort. To strike a compromise be-
tween scan time and quality for Magnetic Resonance (MR) imaging,
two anisotropic scans with different low-resolution (LR) orientations can
be acquired. Typically, LR scans are analyzed individually by radiol-
ogists, which is time consuming and can lead to inaccurate interpre-
tation. To tackle this, we propose tripleSR, a novel approach for fus-
ing two orthogonal anisotropic LR MR images, to reconstruct anatom-
ical details in a unified representation. Our multi-view neural network
is trained in a self-supervised manner, without requiring correspond-
ing high-resolution (HR) data. To optimize the model, we introduce a
sparse coordinate-based loss, enabling the integration of LR images with
arbitrary scaling. We evaluate our method on MR images from two inde-
pendent cohorts. Our results demonstrate comparable or even improved
super-resolution (SR) performance compared to state-of-the-art (SOTA)
self-supervised SR methods for different upsampling scales. By combining
a patient-agnostic offline and a patient-specific online phase, we achieve
a substantial speed-up of up to ten times for patient-specific reconstruc-
tion while achieving similar or better SR quality. Code is available at
https://github.com/MajaSchle/tripleSR.
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1 Introduction

Magnetic Resonance (MR) imaging allows the 3-D assessment of bone and soft
tissue anomalies without ionizing radiation. To increase patient comfort and min-
imize motion artifacts, it is important to keep image acquisition times as low
as reasonably possible [12,20]. One important factor that impacts acquisition
time is the inter-slice (out-of-plane) resolution. Acquiring multiple anisotropic
3-D images with a high in-plane resolution can effectively reduce and split up
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scanning time, especially in populations who struggle to remain still [15]. Multi-
view anisotropic acquisitions are already used in rheumatology and abdomi-
nal imaging [13]. Conventionally, the individually acquired images then need
to be assessed separately, which is time consuming and error prone as lesions
might only be visible in one of the scans, potentially leading to misinterpreta-
tions. Multi-view super-resolution (SR) enables the generation of a single high-
resolution (HR) image given several low-resolution (LR) images for a simpler
diagnostic process [3].

In this work, we introduce a novel self-supervised MR SR method that
combines pretraining on a small, anisotropic dataset and per-patient adapta-
tion during inference. Incorporating multi-patient information enables the use
of cross-patient similarities while maintaining applicability to clinical scenarios
with limited data availability. Accordingly, we split our optimization process
into two phases: The “offline phase” which constitutes patient-agnostic feature
extraction, and the “online phase” for additional patient-specific adaptation and
subsequent inference to generate the final SR image. Minimizing runtimes for
the online phase is critical for efficient deployment in production settings, such
as hospitals, where fast image processing is essential. Specifically, we incorporate
two orthogonal anisotropic LR MR scans to form a joint representation that fa-
cilitates the generation of accurate SR images. Following clinical routine, where
typically no HR data is available, we train our network only on the available
LR data using a fully self-supervised approach, circumventing the need for HR
images as reference for training. By integrating a sparse coordinate-based loss
function, we are able to 1) use images with varying resolution for training and
2) allow for arbitrary-scale upsampling. For evaluation, we perform extensive
evaluations on two publicly available datasets [1,8,16] and demonstrate that our
proposed method generalizes across datasets and to unseen MR sequences. We
specifically highlight that our approach speeds up the SR process substantially
compared to state-of-the-art (SOTA) self-supervised SR methods while preserv-
ing image quality.

1.1 Related Work

Several methods have been proposed to improve the resolution of MR image
data [23,2,9,10]. They can be divided into single-image super-resolution (SISR)
and multi-image super-resolution (MISR) methods [22,10]. MISR utilizes differ-
ent (anisotropic) views or several sequentially acquired LR scans by merging
them to generate a higher-resolution image. For MR SR specifically, multiple
learning-based methods have been proposed that utilize matching LR and HR
data as reference for training SR models. Lyu et al. [5] performed MR SR by
matching features of the target LR contrast and the available reference HR im-
age of a different domain. They used a transformer with a texture-preserving
branch and contrastive learning to enhance the textural details of the SR image.
To overcome the issue of generalization of SR approaches to different scales, Tan
et al. [14] proposed an arbitrary scale SR approach for brain MR images. They
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combined a Weight Prediction Network with SRGAN and achieved compara-
ble performance to SOTA SR techniques. However, their approach relies on a
large training dataset with HR images and they performed evaluation only on
2-D slices. Similar works propose SISR methods for MR or Computed Tomogra-
phy (CT) SR but still rely on ground truth HR data [11,19]. Recently, implicit
neural representations (INRs) have become more prominent in the context of
image SR. In the work of Wu et al. [18], an INR for MR image SR was pro-
posed. This method allows implicit modeling of a continuous function of sparsely
sampled data points and projects the learned intensity distribution onto a more
densely sampled grid. They achieved high reconstruction performance for several
upsampling scales but still relied on paired isotropic LR and HR data. Distinct
from the previously presented methods, other approaches allow for reference-
free training of SR network while integrating arbitrary-scale upsampling. Zhao
et al. propose a reference free SISR for MR image data [23]. McGinnis et al. [7]
used two anisotropic LR MR images of different MR sequences to perform INR-
based SR. While achieving very good SR reconstruction, their approach requires
patient-specific training in the order of 10 to 20 minutes per image, which may
not be clinically feasible.

2 Methodology

Our model, tripleSR for self-supervised SR, takes N paired LR images Iiax and
Iicor from a training set T = {Iiax ∈ Rh×w× d

ei , Iicor ∈ Rh× w
ei

×d}Ni=1 as inputs, with
ei being the upsampling scale of the i-th LR-image pair. In Fig. 1 the complete
training process is shown. Building on the methodology of [18], a convolutional
encoder extracts feature maps V i

ax ∈ Rh×w× d
ei

×128 and V i
cor ∈ Rh× w

ei
×d×128

which are subsequently used for reconstruction. We adapt a residual dense net-
work (RDN) [21], which is specifically developed for image SR, by removing the
upsampling layer and applying 3-D convolution.

Each element in the feature map corresponds to a voxel in the respective LR
image. In the HR image, coordinates may lie between those of the LR counter-
parts, along with the corresponding voxel data. To obtain a feature vector at a
corresponding high-resolution coordinate xHR, we perform trilinear interpolation
on the feature maps V i

ax and V i
cor and generate two HR feature maps with the

shape h × w × d × 128 each. From this, we sample the feature vectors viHR(ax)
and viHR(cor) at a specific HR coordinate xHR. The two extracted feature vectors
viHR(ax) and viHR(cor) corresponding to the HR coordinate are concatenated and
fed to the decoder. The decoder consists of eight fully connected layers, each
followed by ReLU activation with a residual connection after the fourth layer.
Each inner layer has 512 input and output features. The decoder outputs the
predicted voxel intensity Î of the respective spatial coordinate xHR.

We split our SR process into two phases. The first part is a training phase
on a disjoint dataset which allows patient-agnostic feature extraction. We call
this the “offline phase” as it only needs to be performed once. The second part
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Fig. 1. Overview of the network architecture proposed in this study.

is an optional patient-specific fine-tuning and inference, which we refer to as
the “online phase”. Here, additional patient-specific details and anomalies can
be learned. During both phases, no HR ground truth data is available. We opti-
mize our model by using a loss function based on sparse continuous coordinates.
Therefore, two orthogonal LR images of the same object are viewed as sparse
representations of the same underlying instance. Instead of fixed voxel coordi-
nates, we compute the loss for suitable locations in the continuous coordinate
space where the coordinates are normalized to the range [-1, 1]. This enables
the seamless SR of data with varying resolutions, as demonstrated in our exper-
iments section. The applied loss computes the mean squared error (LMSE) of the
voxel intensity of reference LR images and the voxel intensity of the predicted
image Î at matching coordinates Max and Mcor, where

Max = CHR ∩Cax , and Mcor = CHR ∩Ccor. (1)

Here, ∩ represents the intersection of available normalized coordinates. Coor-
dinates corresponding to regions without measurements in the LR image are
excluded from the loss calculation.

3 Experiments

3.1 Datasets

To assess performance, we simulated LR images from HR images and compared
the SR results to the corresponding HR. We emphasize that the HR data was
used only as a ground truth for evaluation and was not used during model
training. We used two publicly available datasets for our evaluation: The Brain
Tumor Segmentation (BraTS) dataset [1,8], consisting of brain MR images with
an isotropic resolution of 1×1×1 mm3 and the HCP dataset [16], which includes
1200 MR images with an isotropic resolution of 0.7×0.7×0.7 mm3. For each
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dataset and each MR sequence, we randomly selected 170 subjects (100 for
training, 30 for validation, and 40 for final testing).

3.2 Preprocessing

For fair comparison, all images were registered using the NMI152 template with
an isotropic resolution of 1mm. Background areas were removed, and images
were normalized to [0, 1]. To generate the anisotropic images in the training
dataset, we randomly downsampled each image in both axial and coronal direc-
tion using a random downsampling scale in the range [2, 4] once at the beginning
of the training. We applied a commonly used downsampling method where HR
images are downsampled by cropping in the frequency domain [4,6].

For evaluation, we generated two anisotropically sampled LR MR images in
the axial and coronal dimension each with an in-slice resolution two and four
times the between-slice resolution. As the LR images were simulated from one
HR scan, they can be assumed to be rigidly registered. The axial images were
resampled to a resolution of 1×1×2 mm3 and 1×1×4 mm3, while the coronal
images were resampled to a resolution of 1×2×1 mm3 and 1×4×1 mm3. All LR
image coordinates were normalized to a reference frame in the range [−1, 1].

3.3 Implementation Details

During the offline phase, we trained our network for 35 epochs with a batch size B
of 10 (lr=0.0001, Adam optimizer with β1 = 0.9 and β2 = 0.999), with hyperpa-
rameters tuned on the validation set. Training and evaluation were executed on
an NVIDIA A40 with Python 3.9 and PyTorch 1.13.1. In each batch, B randomly
cropped LR patches p of one image were selected, where B equals the training
batch size. The axial and coronal image patches were of size 10 × (ei × ei × 1)
and 10× (ei × 1× ei), respectively. To enable efficient batch processing for dif-
ferent upsampling scales, 8000 random samples are selected from each patch.
Each sample corresponds to one HR voxel coordinate. For the online phase, we
used the trained model from the offline phase. For the optional patient-specific
training, the model undergoes 10 additional epochs on LR patches from a single
patient before the final inference.

During the online phase, two different settings were evaluated. First, patient-
specific online training was performed to update the model before subsequent
inference. Second, inference without additional training was conducted, which is
referred to “ours w/o FT”. We quantitatively evaluated models using Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [17],
which assess pixel accuracy and perceptual quality. To ensure a fair compari-
son, we computed the metrics only within the brain region and excluded the
background, as BISR is only trained on the brain area.

3.4 Reference Approaches

As we trained our models without HR ground truth data, we performed evalua-
tions by comparing them with other unsupervised/self-supervised methods. We
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Table 1. Quantitative results for all MR sequences and SR methods on the BraTS and
the HCP test set (trained and evaluated on the same MR sequence). Best results are
bold, second best underlined. “Ours w/o FT” refers to results without online training.

Resampling Scale ×2 ×4
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

B
ra

T
S

T
1

C
E

cubic spline 33.794 ± 2.408 0.981 ± 0.006 29.93 ± 2.285 0.945 ± 0.01
SMORE 37.939 ± 1.483 0.981 ± 0.003 30.678 ± 1.348 0.915 ± 0.009
BISR 42.727 ± 2.576 0.993 ± 0.003 35.008 ± 2.183 0.963 ± 0.007
Ours 43.166 ± 2.105 0.994 ± 0.001 35.598 ± 1.813 0.966 ± 0.005

Ours w/o FT 41.358 ± 2.701 0.993 ± 0.002 35.531 ± 1.4655 0.964 ± 0.004

T
1

cubic spline 35.774 ± 3.745 0.991 ± 0.004 29.624 ± 3.629 0.962 ± 0.009
SMORE 34.333 ± 2.64 0.982 ± 0.003 26.627 ± 1.817 0.906 ± 0.008
BISR 39.003 ± 3.984 0.993 ± 0.006 31.078 ± 4.378 0.967 ± 0.017
Ours 38.832 ± 4.121 0.995 ± 0.002 31.169 ± 3.33 0.969 ± 0.006

Ours w/o FT 37.780 ± 4.061 0.993 ± 0.003 30.473 ± 3.632 0.965 ± 0.009

T
2

cubic spline 33.890 ± 1.876 0.986 ± 0.004 30.643 ± 2.168 0.959 ± 0.014
SMORE 35.645 ± 1.388 0.984 ± 0.004 27.799 ± 1.217 0.91 ± 0.015
BISR 42.460 ± 1.853 0.997 ± 0.001 34.74 ± 1.661 0.976 ± 0.007
Ours 42.218 ± 1.750 0.997 ± 0.001 33.427 ± 1.640 0.973 ± 0.009

Ours w/o FT 40.531 ± 2.190 0.995 ± 0.002 33.073 ± 1.412 0.969 ± 0.008

H
C

P
T

1

cubic spline 29.820 ± 3.785 0.982 ± 0.006 22.341 ± 3.947 0.930 ± 0.023
SMORE 30.603 ± 4.099 0.973 ± 0.007 22.533 ± 3.177 0.881 ± 0.019
BISR 31.249 ± 4.574 0.985 ± 0.007 22.758 ± 4.636 0.931 ± 0.034
Ours 34.140 ± 5.410 0.990 ± 0.004 23.301 ± 5.274 0.938 ± 0.025

Ours w/o FT 29.950 ± 4.655 0.984 ± 0.007 22.523 ± 4.860 0.933 ± 0.026

T
2

cubic spline 30.561 ± 1.275 0.973 ± 0.004 27.336 ± 0.864 0.930 ± 0.008
SMORE 31.444 ± 0.814 0.967 ± 0.004 25.817 ± 0.597 0.877 ± 0.010
BISR 35.321 ± 0.858 0.985 ± 0.002 29.862 ± 0.531 0.947 ± 0.004
Ours 35.482 ± 0.877 0.986 ± 0.001 29.372 ± 1.231 0.941 ± 0.006

Ours w/o FT 34.841 ± 1.155 0.985 ± 0.002 29.681 ± 1.055 0.942 ± 0.006

used cubic spline interpolation, a SISR method SMORE [23] and an INR MISR
approach referred to as BISR [7]. Originally, [7] used two sequences as input
and optimized the SR jointly. We adapted the approach to directly predict only
one SR image instead of two images with different MR sequences. Cubic spline
interpolation and the SISR method SMORE [23] are performed individually on
the axial and coronal LR images of each patient. The coronal and axial metric
values are then averaged.

4 Quantitative and Qualitative Results

We evaluated on 40 brain MR images each for T1, T1 contrast-enhanced (CE),
and T2 sequences for BraTS and T1 and T2 for HCP which are trained either on
images from the same sequence or from any of the other sequences (for 2× and 4×
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Table 2. Duration of the offline and online phase for each method in minutes. Best,
i.e., shortest times are highlighted in bold.

Resampling
Scale

×2 ×4

offline online offline online

B
ra

T
S

T
1

SMORE 0 9.09 ± 0.29 0 9.16 ± 0.32
BISR 0 19.25 ± 1.32 0 10.59 ± 0.67
Ours 130.99 ± 5.15 3.32 ± 0.31 130.99 ± 5.15 1.55 ± 0.15

Ours w/o FT 130.99 ± 5.15 1.94 ± 0.22 130.99 ± 5.15 0.73 ± 0.08

Table 3. Quantitative results for different training settings with patient-specific online
training. “Train on” refers to the used training data and “test on” refers to the specific
test set. “Br” is used as abbreviation for BraTS.

Resampling Scale ×2 ×4
Train on Test on PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Br T1 CE Br T1 CE 43.166 ± 2.105 0.994 ± 0.001 35.598 ± 1.813 0.966 ± 0.005
Br T1 Br T1 CE 42.680 ± 2.435 0.994 ± 0.001 35.275 ± 1.818 0.963 ± 0.005
Br T2 Br T1 CE 42.762 ± 2.285 0.994 ± 0.001 35.476 ± 1.66 0.963 ± 0.005
Br T1 Br T1 38.832 ± 4.121 0.995 ± 0.002 31.169 ± 3.33 0.969 ± 0.006
Br T1 CE Br T1 40.178 ± 4.388 0.995 ± 0.003 31.457 ± 3.382 0.970 ± 0.006
Br T2 Br T1 39.981 ± 4.259 0.995 ± 0.002 31.474 ± 3.245 0.969 ± 0.007
HCP T1 Br T1 39.410 ± 4.200 0.995 ± 0.002 31.450 ± 3.674 0.970 ± 0.006
Br T2 Br T2 42.218 ± 1.750 0.997 ± 0.001 33.427 ± 1.640 0.973 ± 0.009
Br T1 CE Br T2 42.360 ± 1.962 0.997 ± 0.001 34.290 ± 1.359 0.976 ± 0.007
Br T1 Br T2 42.226 ± 1.958 0.997 ± 0.002 33.610 ± 1.467 0.973 ± 0.008
HCP T2 Br T2 42.456 ± 2.311 0.997 ± 0.002 33.548 ± 1.819 0.975 ± 0.009

upsampling). Table 1 summarizes the quantitative results for all SR approaches,
including mean and standard deviation. We achieve higher or comparable PSNR
and SSIM values on all MR sequences and upsampling scales. Using the addi-
tional patient-specific online training helps to improve performance in all cases.
Still, without additional training (ours w/o FT), the performance is comparable
to the best reference approach at approx. 10-15× faster inference times. Table 3
shows results obtained from testing on a dataset distinct from the one used for
training. Even when the network is trained on a completely different dataset,
the SR performance is comparable or even better compared to training on the
same dataset. A reason for the better performance of the model trained on Br T1
CE for the BR T1 test data may be that the contrast-enhanced data potentially
provides richer features and patterns, which allows the model to generalize to
non-enhanced images.

The time required to generate a SR reconstruction for each method can be
divided into offline and online phases. The results are shown in Table 2. Our
model is pre-trained once offline which takes approximately 130 minutes. We
average the time for the offline phase for three runs. During the online phase,
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Fig. 2. Reference HR image and qualitative SR results for all MR sequences in the
sagittal plane of the BraTS test set where no in-plane HR images are available.

our approach is approximately 10-15× faster when using the offline model w/o
patient-specific fine-tuning and still 6× faster when fine-tuning for a specific
patient, compared to the reference approach BISR.

In Fig. 2, qualitative examples of the BraTS dataset for each MR sequence
and SR method can be seen in comparison to the actual HR image. The full
image and a zoomed-in version can be seen for each sample. Overall, the SR
results obtained using SMORE and cubic spline interpolation appear blurred or
noisy. In some cases, BISR introduces noticeable blocking artifacts. In contrast,
our method preserves accurate anatomical structures while minimizing noise.

5 Discussion and Conclusion

In this work, we presented a novel approach for MR image SR. In both quanti-
tative and qualitative evaluations, our method produces HR images that match
or surpass the quality of current reference approaches. A key strength lies in
its substantially reduced patient-specific training time during the online phase,
which is critical for translating such techniques into clinical practice. Notably,
after generating only 14 SR images with a resampling factor of 4 using BISR, the
time invested in our offline phase is already offset. This efficiency gain enables a
ten-fold increase in throughput for the generation of SR data. This could help to



Self-Supervised Multi-View Super-Resolution 9

further drive acceptance of deep learning-supported diagnostic imaging in clini-
cal workflows. Additionally, the sparse coordinate loss enables the integration of
LR images with varying resolution scales, further enhancing the versatility and
applicability of our approach. The patient-specific training allows strong adap-
tation and has lower risk of traditional overfitting due to the inherent inductive
bias of the network.

Finally, the presented method demonstrates promising capabilities by consis-
tently achieving high-quality results, regardless of whether training is performed
on data from the same cohort or on a disjoint dataset. Further experiments
are needed to validate our findings and demonstrate the benefits of using the
reconstructed SR images in diagnostic assessments.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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