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Abstract. Generative modeling of anatomical structures plays a crucial
role in virtual imaging trials, which allow researchers to perform stud-
ies without the costs and constraints inherent to in vivo and phantom
studies. For clinical relevance, generative models should allow targeted
control to simulate specific patient populations rather than relying on
purely random sampling. In this work, we propose a steerable generative
model based on implicit neural representations. Implicit neural repre-
sentations naturally support topology changes, making them well-suited
for anatomical structures with varying topology, such as the thyroid.
Our model learns a disentangled latent representation, enabling fine-
grained control over shape variations. Evaluation includes reconstruction
accuracy and anatomical plausibility. Our results demonstrate that the
proposed model achieves high-quality shape generation while enabling
targeted anatomical modifications.

Keywords: Shape Synthesis - Implicit Neural Representations - Latent
Space Disentanglement

1 Introduction

Evaluating the performance of novel medical imaging modalities through patient
trials is expensive in terms of patient risk, time, and cost [1]. Simulating in vivo
trials with tissue-mimicking phantoms is common practice, but since recreat-
ing human tissue is complex, experiments with high mimicking accuracy remain
costly [2]. Virtual imaging trials, where both the patient and the imaging modal-
ity are simulated, provide a compelling alternative: they allow for inexpensive,
rapid and flexible testing while closely matching patient tissue [3]. However, these
trials are only meaningful if the underlying anatomical model of the patients is
accurate, but also covers the variations seen in the population.
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Generative models have the potential to synthesize anatomical structures [4],
enhancing existing (open source) anatomical datasets, such as the Gold Atlas
project [5] and MedShapeNet [6]. However, in medical imaging, factors not di-
rectly related to the clinical question can strongly influence the image and its
interpretation. For example, imaging might be affected by anatomical variation
and tissue composition, which purely random generative approaches cannot dis-
entangle. There is therefore a need for models that provide control over such
factors, allowing virtual cohorts to be generated in line with study objectives.

In recent years, implicit neural representations (INRs) have emerged as a
powerful and flexible platform for shape modeling [7,8]. To describe shapes,
INRs can represent surfaces as the zero-level set of their signed distance function
(SDF), modeled in a neural network. Unlike more traditional template-based ap-
proaches, INRs are amenable to various conditioning mechanisms and naturally
allow for modeling topological changes in a population [9,10]. Conditioning INRs
on relevant shape features introduces an additional level of control for shape syn-
thesis, which has previously been demonstrated outside [11,12], and inside the
medical domain [13,14,15]. Furthermore, the ability of INRs to represent organic
shapes with varying or changing topology has been previously demonstrated in
biomedical applications [16]. Topological changes in anatomy can, for instance,
occur due to certain diseases like tissue adhesion, renal fusion, or osteosarcoma,
or due to surgical procedures like a laryngectomy.

In this paper, we investigate steerable anatomical shape synthesis in a pop-
ulation with topological variations. As a concrete use case we opt to model the
thyroid gland, which is diverse in its shape and bilateral symmetry, and not topo-
logically consistent across the patient population. The thyroid consists of two
lobes, connected by a bridge called the isthmus. However, up to 33% of all pa-
tients show agenesis of the isthmus, having two separate lobes instead of a single
connected thyroid [17]. We show that INRs are capable of synthesizing anatomi-
cally feasible thyroids. Additionally, we condition INRs on three key anatomical
features (volume, isthmus cross-sectional area and symmetry) to generate and
edit thyroids in a steerable way. Finally, we experiment with a simple correlation
loss term to promote feature disentanglement.

2 Methods

2.1 Model

To model three-dimensional shapes, we use coordinate-based multilayer percep-
trons (MLPs) to encode the SDF. Similar to 7], we use a single MLP to represent
multiple shape instances by conditioning the MLP on a latent code z, which is
concatenated to the input coordinates. We use MLPs with 3 hidden layers of
256 nodes and ReLLU activations. For every target shape i, we sample the SDF
value s € R for a set of coordinates = € R3:

X; ={(x,s): SDF;(x) = s} (1)
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The parameters 6 of the MLP fy are optimized such that the model approx-
imates the SDF for each shape ¢ when conditioned on its latent code z;:

fo(x, z;) = SDFj(x) (2)

2.2 Training

Both the parameters 6 and the latent codes z; are optimized using the mean
squared error loss on the predicted SDF values. Additionally, we apply Lo reg-
ularization to the latent codes as we assume Gaussian noise on the SDF values,
leading to the following total loss L:

L(fo,X,2) = Y |Ifo(w,z) = SDF(@)||5 + Al|=]3 (3)
zeX

2.3 Disentanglement

Training a model as described in Section 2.1 does not impose any structure on the
latent space. Hence, randomly sampled codes provide novel samples, but there is
no easy way to control anatomical aspects, such as the volume of the generated
shape. To promote steerability of output shape characteristics, we split the latent
code z; for each shape into a fixed part z; fizeq, which is not updated during
training, and a trainable part z; ¢rqinabic- By letting z; fizeq represent anatomical
features, the model is directly conditioned on them, such that we can investigate
disentanglement of 2z; fizeq With respect to the trainable features. If 2z; fizeq is,
for instance, set to the volume of each shape %, then 2; trginasie Will ideally model
all shape changes but the volume. Concretely, we investigate the two following
disentanglement strategies:

Fixed conditioning The anatomical feature(s) of interest are added as fixed
latent code features and training is done as described in Section 2.1. This is a
baseline approach to investigate how much the model disentangles the features
by itself without any special strategies.

Correlation loss In addition to the Fixed conditioning strategy, we calcu-
late a correlation loss term at the end of each epoch to update the latent codes.
The loss term promotes disentanglement of the fixed features from the train-
able features. Specifically, the loss term calculates the mean Pearson correlation
coefficient between the fixed and trainable latent features:

_ Z COV Zfz;red) ztramable,j) (4)

corr N
O fizedOtrainable
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Fig. 1. Examples from the dataset illustrating the variety in thyroid anatomy. From
left to right: (1) a typical connected thyroid, (2) a typical split thyroid, (3) a very large
thyroid, (4) a very small thyroid, (5) a highly asymmetric thyroid.

Here N is the number of trainable latent features, j is the latent feature index.
If a model is perfectly disentangled, the fixed feature should have no correlation
to any of the trainable dimensions, and hence have a low loss value.

2.4 Inference

Shapes are synthesized by conditioning the model on a latent code z and sam-
pling the predicted SDF values fy(x,2) for = € [0,1]®, where = is sampled on
a 643 grid. Meshes are obtained with marching cubes. Novel samples are syn-
thesized by sampling randomly from the latent space. For each trainable latent
dimension, we fit and draw random values from a normal distribution. For fixed
latent dimensions in conditioned models, we sample directly from the distribu-
tion seen in the dataset, such that the synthesized population follows the training
population.

2.5 Data

We collect thyroid shapes from the TotalSegmentator training dataset [18]. The
dataset consists of 1228 CT scans on which 117 structures, including the thyroid
gland, have been annotated. Of these 1228 scans, there are 415 scans where
the thyroid gland is fully in the field of view and is completely annotated. We
additionally collect the trachea shape for each thyroid to center the meshes. Due
to the diverse nature of the dataset, not all cases are annotated consistently.
After a check for annotation quality, which includes checking for a number of
connected components and watertightness, we discard 62 cases. Finally, we train
all models on a set of 353 thyroids. Representative examples from the dataset
are shown in Figure 1.

We choose to center all meshes on the trachea, instead of on thyroid center
of mass, because asymmetric thyroids would give off-center results. To allow for
centering, we first convert all binary voxel grid thyroid masks to meshes with
marching cubes, and then center them on the center of mass of the trachea. The
meshes are finally normalized to the largest extent in the dataset in each dimen-
sion, such that all shapes fall within a common unit cube, but size variations are
preserved.

For each thyroid mesh, we sample the SDF values for 50,000 coordinates
for training. 40,000 coordinates are randomly sampled on the mesh surface and
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hence have an SDF of 0. The remaining 10,000 points are a random sample of the
40,000 surface points plus a randomly sampled displacement in each direction
from a Gaussian distribution with a standard deviation of 0.1. We publish the
processed meshes, pre-sampled SDF values and our source code online.*

2.6 Validation

To validate that the baseline model is able to capture the anatomical variations
in the dataset, we evaluate reconstruction accuracy with the Chamfer distance
between reconstructed and reference meshes. To validate that the baseline model
can also generate meaningful novel samples, we validate that they are anatomi-
cally realistic with respect to three key anatomical features, of which we compare
training to generated population. Specifically, the anatomical features we con-
sider are thyroid volume, isthmus area, and symmetry.

Volume is a natural measure for size variations. Furthermore, isthmus area
allows for a continuous description from a split thyroid (area=0) to a connected
one. It is calculated as the thyroid area in the midsagittal plane. Finally, to
characterize the large variation in symmetry in the dataset, we flip one half of
the thyroid onto the other by mirroring at the midsagittal plane, and calculating
the intersection over union between both halves. In this measure, a perfectly
symmetric thyroid has a symmetry score of 1, whereas a completely asymmetric
thyroid has a score of 0.

To validate steerability of the conditioned models (fized and correlation), we
randomly generate 1000 thyroids and evaluate the correlation between the con-
ditioned anatomical features and the actual generated features with the Pearson
correlation coefficient (PCC).

3 Results

All models are trained with the Adam optimizer with a learning rate of 3-1074.
Each model is trained for 10,000 epochs, where each epoch consists of 1000
coordinate-SDF' pairs for each shape, sampled randomly from X;. Models are
trained with a trainable latent code of size N = 64, with their values initialized
randomly from N(0,0.012) and where applicable, features added as 3-vectors.
Throughout the results we compare three different models:

— Baseline A model conditioned only on a trainable latent code.

— Fized The baseline model, but additionally conditioned on volume, isthmus
area, and symmetry. This model is trained with the default loss (3).

— Correlation The fixed model, with the correlation loss (4) added.

* https://github.com /MIAGroupUT /steerable-shape-synthesis
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Fig. 2. Comparison between volume, isthmus area and symmetry for the training data
(blue) and 1000 randomly generated meshes using the baseline model (red). The dark
red denotes the overlap of both distribution

3.1 Reconstruction quality

The mean Chamfer distance between training meshes and their corresponding
reconstructed meshes were 1.56 + 0.38 mm (std) for the baseline model, 1.63 £
0.12 mm for the fized model, and 1.60 £+ 0.06 mm for the correlation model. This
shows that the baseline model is able to fit all shapes in the dataset well, and
that adding extra conditioning to the latent code does not impact reconstruction
quality, as the dimensions of the shapes in the training set are 44.75 + 9.79 x
29.32 £+ 5.91 x 52.18 + 7.03 mm.

3.2 Generation quality

To demonstrate the generative performance of the baseline model, 1000 meshes
were randomly generated. The generated distributions of volume, isthmus area
and symmetry compared to the training distributions are shown in Figure 2.
These results indicate that our baseline approach is able to generate thyroids
which cover the entire training distribution. Moreover, the learned latent space
follows the anatomical distribution of the training data. Furthermore, to verify
that we are generating new shapes and are not simply replicating shapes in the
training set, we computed the pairwise Chamfer distance between all shapes in
the training set. This showed that the average Chamfer distance to the closest
shape was 4.13 4 1.33 (std). For the 1000 randomly generated shapes, the average
distance to the closest shape in the training set was 3.67 £ 0.51, 3.72 + 0.95, and
3.69 + 0.76 for the baseline, fixred and correlation versions, respectively. Hence,
while shapes are samples from the same distribution, synthetic shapes have no
match in the training set.

3.3 Steerability

To evaluate to which extent latent conditioning on volume, isthmus area and
symmetry works, we generate 1000 random meshes for both the fized and the
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Fig. 3. Correlation between conditioned and generated anatomical features for the fized
model (top row) and the correlation model (bottom row). The inset shows the Pearson
correlation coefficient.

correlation model. Figure 3 shows the correlation between features the model is
conditioned on and the actual generated features for the both models. Generated
volume correlates well with the conditioned volume with a PCC of 0.98 for both
models, indicating that volume is a relatively easy feature to disentangle. Isthmus
area and especially symmetry appear more complex features to disentangle, and
here the use of the correlation loss improves the PCC in both cases: from 0.88
to 0.93 for the isthmus area, and from 0.32 to 0.43 for symmetry.

To investigate the ability of the correlation model to independently vary
specific features, we show the editing of a particular training mesh in Figure 4.
While varying a specific feature, the other features show almost no difference,
with exception of the isthmus area when increasing the symmetry value. We
hypothesize this might be because the cross-sectional area increases when you
tilt a thyroid, i.e., make it less symmetrical. This could be a reason why it is
harder for the model to disentangle symmetry from the isthmus area than from
the volume.
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Fig. 4. Editing a training mesh (middle column, green) by independently varying vol-
ume (red), isthmus area (blue) and symmetry (grey). The plots show each anatomical
feature for each of the rows, demonstrating that features can be independently varied.

4 Discussion

We show that INRs are capable of synthesizing anatomically accurate thyroid
glands, including the ability to model topological changes across a patient pop-
ulation. By conditioning the models on volume, isthmus area, and symmetry, it
is possible to synthesize thyroids in a controlled manner. While prior work by
Sgrensen et al. [14] has shown that anatomy synthesis with INRs can be condi-
tioned on explicit patient characteristics, we here show that explicitly minimizing
the correlation between fixed and trainable features enables disentanglement of
these features in the latent space. The resulting model can be used to gener-
ate patient cohorts with specific anatomical characteristics and allows editing
anatomical features of existing thyroids with a high degree of independence.
Both Figure 3 and 4 show that the three anatomical features we include are
not equally complex for the model. Volume is fitted well by both models, but
isthmus area is already more difficult, which might be due to fact that it is a
more local feature. Symmetry is clearly the most complex, although Figure 2 and
4 show that the models can model the feature to some extent. In order for the
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model to disentangle symmetry, it arguably needs to learn some representation
of that feature, which might be difficult for our relatively small MLP models.

While the thyroid is a complex use-case due to variations in topology and
symmetry, the shapes themselves are still relatively smooth. Whether our ap-
proach generalizes to organs with sharper features that require a representation
containing high frequencies is an interesting direction for future research. In this
case, investigating alternative model architectures such as Siren, which has been
shown to have a stronger capacity for representing sharp features, is probably a
fruitful direction [19].

Another interesting avenue for future investigation is extending our approach
to a multi-organ setting. In this setting, a model could be conditioned on a
unique latent code for each output organ. The generative process can then be
steered on an organ-level basis, while still providing a coherent set of generated
organs, respecting the anatomical hierarchy. Using the proposed correlation loss
could help models to disentangle organ representations in latent space, keeping
their representation independent, and allowing for imposing variations in single
organs.
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