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Abstract. Biomedical image classification faces several adversarial chal-
lenges, including occlusions from artifacts, variations in tissue pigmen-
tation, and class imbalance, which hinder model generalization. Exist-
ing attention mechanisms enhance region localization but often intro-
duce redundant dependencies across attention heads, limiting feature
diversity. We propose the Background-Invariant Independence-Guided
Multi-head Attention Network (BIIGMA-Net) to address these issues.
BIIGMA-Net employs Multi-head Independence-Guided Channel Atten-
tion (MICA), where each head independently learns feature importance
while enforcing neuron-wise independence using the Hilbert-Schmidt In-
dependence Criterion (HSIC) to enhance feature diversity. Additionally,
a saliency-driven mechanism suppresses background activations by se-
lectively shuffling non-salient vectors, preventing the model from relying
on static background cues. By integrating these strategies, BIIGMA-
Net improves robustness against spurious background noise while ensur-
ing complementary feature extraction. Extensive experiments on pop-
ular skin cancer datasets (ISIC-17, ISIC-18 and ISIC-19) demonstrate
the framework’s effectiveness and robustness. Our code is available at:
https://github.com/shb2908 /BIIGMA-Net

Keywords: Channel and spatial attention - Medical imaging - Noise
regularization - Skin cancer - Skin lesion classification.

1 Introduction

Skin cancer, comprising various malignancies, is a significant global health con-
cern. The World Health Organization (WHO) reported over 1.5 million new cases
and approximately 350,000 melanoma diagnoses annually, with 57,000 deaths in
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2020. Early diagnosis is critical, as delayed detection increases health risks and
burdens healthcare systems. Current diagnosis relies on visual inspection by der-
matologists, which is subjective and time-consuming.

CNN-based automated classification methods have shown promise but face
challenges in biomedical imaging. One major limitation is the model’s discrimi-
native ability, which is often compromised by adversarial factors such as hair ar-
tifacts, skin pigmentation, and variations in complexion. These introduce noise,
making it difficult for models to distinguish pathological patterns from back-
ground textures. Moreover, lesions often occupy a small portion of the image,
leading to ineffective feature extraction. Class imbalance further weakens the
model’s generalization by biasing it toward majority classes, prompting memo-
rization rather than learning discriminative features. This reduces sensitivity to
rare conditions, which are often of greater clinical significance.

Researchers have tackled two key challenges in skin lesion classification: class
imbalance in multi-class datasets and diverse imaging artifacts. To address class
imbalance, techniques such as up-sampling and under-sampling [I0/I5] have
been explored. Apart from these, recent methods leverage contrastive learn-
ing and self-distillation to enhance feature representation and model general-
ization. Xu et al. [21I] proposed a model-agnostic self-supervised knowledge dis-
tillation approach using noisy teacher predictions. Zhang et al. [25] introduced
Class-Enhancement Contrastive Learning (ECL) with a hybrid-proxy model and
balanced-weighted loss. Li et al. [14] developed Targeted Supervised Contrastive
Learning (TSC) to enforce uniform class feature distribution for better separabil-
ity. Yao et al. [23] applied deep learning with DropOut, DropBlock, Rand Aug-
ment, and a multi-weighted loss to improve feature extraction. Chu et al. [5]
proposed a deep-learning model with class-agnostic activation maps to enhance
melanoma diagnosis under varying imaging conditions.

Popular channel attention mechanisms such as SE-Net and CBAM [12/20]
introduce lightweight modules that recalibrate channel-wise feature responses
by modeling interdependencies between channels. Zhang et al. [24] proposed at-
tention residual learning blocks, using higher-layer feature maps as attention
masks for lower layers to enhance feature representation. Ding et al. [7] further
improved attention-based learning by leveraging class activation maps across
multiple layers via matrix multiplication and concatenation. Wei et al. [19] ex-
tended this with a dual attention module, where spatial attention captures local
patterns, and channel attention strengthens global feature dependencies.

Multiple-Exit CAM [4] captures activation maps at different resolutions to
improve spatial attention robustness. Transformer-based attention mechanisms,
such as TransAttUnet [2], have also been integrated into image classification and
segmentation models. However, whether attention heads learn complementary
information remains an open question, as explored in [1J3]. Additionally, adver-
sarial robustness has been studied through various approaches [22/16], addressing
artifacts like hair and pigmentation in skin lesion and biomedical images.

In our proposed Background-Invariant Independence-Guided Multi-head At-
tention (BIIGMA-Net), we enforce independence across projection heads in the
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channel attention block by minimizing mutual information, reducing redundancy
in feature representation. To improve robustness against spurious background
noise, we generate a hybrid feature map by selectively shuffling non-salient vec-
tors using an inverted saliency map, ensuring classification consistency. To the
best of our knowledge, this is the first work integrating an independence crite-
rion in CNN-based attention heads alongside background agnosticism.The key
contributions of our work are:

1. Multi-head Independence-Guided Channel Attention (MICA): We
introduce a multi-head channel attention mechanism where each head inde-
pendently learns feature importance. To enforce decorrelation, we use the
Hilbert-Schmidt Independence Criterion (HSIC) at the neuron level instead
of covariance matrices, which fail to capture higher-order dependencies. This
ensures diverse and complementary feature extraction, reducing redundancy
and more information count in the final representation.

2. Spatial Attention Guided Background Invariance: To suppress irrel-
evant background features while preserving discriminative information, we
employ a saliency-driven mechanism that samples and shuffles background
feature vectors. This prevents reliance on static background cues, enhancing
robustness against background variations and spurious correlations.

2 Proposed Method

In our proposed method, we focus on two aspects. Firstly, Channel Atten-
tion Block is introduced to enhance non-redundant information by reducing mu-
tual information across feature projections using our independence criterion.
Secondly, Spatial Attention Guided Vector Sampling aggregates shallow convo-
lutional features into a saliency map and filters non-salient regions, enforcing
background-invariant learning through adversarial background shuffling.

Given a dataset D = {(z;,y;)}™, the final prediction is § = FoG(x;), where
F is the convolutional backbone and G is the classification head. The final con-

volutional feature block is Rt = F(z;), where Rt ¢ REXWXC Additionally,

convolutional features from shallower depths are denoted as {R." Fearly exits

R'** is represented as R in later section for simplicity.

2.1 Multi-head Independence Guided Channel Attention

Our goal is to extract mutually independent projections from the original convo-
lutional feature set, increasing non-redundant information in R'**. We achieve
this by passing the features through K parallel projection blocks (P, 1 x 1 Conv
+ SE Block), generating K projected feature sets {R’;mj}kK:l. The feature block
is then reshaped as follows:

BxHXxWxC BxHWxC
R —R

yielding {r*}£_ | which can be viewed as K sets of HW C-dimensional vectors
for a single sample in the batch.
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Multi-head Independence-guided Channel Attention
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Fig. 1. Proposed MICA block projects the input feature into multiple subspaces. HSIC
criterion is minimized to reduce mutual information among these projections.

We impose independence between neuron activations across different heads.
Specifically, we minimize the Hilbert-Schmidt Independence Criterion (HSIC)
[918] for each pair {r*1,r*2}, .\, within each batch. HSIC first maps the covari-
ance matrix of mean-normalized features {#*1,7*2} into kernel space using an
RBF kernel for each HW number of spatial locations:

_ 1 ak1 | akay T ~ko
Con sy = g 08 7) = g 041054 S (6t

(1)

1
HSIC({Tkl,TkQ}) = Hc{f‘kl,f’k?}HF = WTT[¢TM Thy C¢Tk2 Tho C]
(2)
1
TrlK,, CK,, C]

C(HW)?

Here C' is centering matrix and ¢ is the kernelized feature. Kernelization

accounts for dependencies across different neuron indices, whereas covariance

considers only identical indices. We optimize the independence criterion across all

head pairs while applying Lo regularization (A = 1) on projection head weights
to mitigate overfitting:

1 ki ks norm
Eindep = K2 E E HSIC(T]%’ rkj) + )‘12 (Wheads) (3>
ki ki#k;

Finally, we concatenate features from all heads to obtain the final channel
activated (CA) features:
R [Rgljro_]] =1 (4)
where [.] denotes channel-wise concatenation.
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Fig. 2. Proposed BIIGMA Network. The bottom-left shows the spatial attention block,
which processes a feature block to generate an attention map. The right side depicts the
vector sampling mechanism, storing batch-wise feature blocks and selectively sampling
the background vector to form a hybrid feature.

2.2 Spatial Attention Guided Vector Sampling

We extract convolutional features from early exits (shallow depths of the back-
bone) and pass each through adapters (A) comprising a 1 x 1 layer and a max-
pooling layer. The processed features are concatenated as S = [A(R(l))]#early exits
where [.] denotes concatenation. Max-pooling ensures consistent spatial dimen-
sions. Channel pruning is then applied by removing low-variance channels [26/13]
to mitigate overestimation of point-wise spatial attention scores, yielding the
pruned feature:

S = [Sl}#channels

Hj=1var(8;)<mean(var(S))

The spatial attention (SA) map is computed as the channel-wise mean fol-
lowed by sigmoid activation:

M = SA(S) = sigmoid(mean(S, channel axis)), M € R¥*W

We define,

(5)

M™ = 1w — M (6)

Here, M represents the non-salient region. The background set B is filtered
from the last convolutional feature R:

inv nbatrh _ nhatthHXW
{Ri © M }geer = {705 7,2

where 7 represents point-wise R¢-dimensional vectors. A sampled back-
ground tensor @ of shape RT*WXC is generated by randomly sampling the
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vectors from B for each example. The hybrid feature map for i*" sample is then
constructed as:

Hi :Mi@Ri'FMz:m} ©6;
Finally, H; is passed through the proposed the same MICA block:

HOA = MICA(H) (7)

This sampling enhances MICA’s robustness to background cues by enforcing
invariance criteria.

2.3 Overall Loss Function

We define the classification objective as
Letassis = Lwep(GR),Y) + Lwer(GH),Y) (8)

where Ly g denotes the Weighted Cross-Entropy Loss where class weights
are estimated as the inverse class frequency. Minimizing the Ly cg for origi-
nal branch prediction i.e. R4 as well as the sampling branch prediction H¢4
ensures the invariance to background cues. The final loss is

L= ﬁclassif + »Cindep (9)

During inference, sampling is skipped, and predictions are taken from the
original branch only.

3 Experiments and Results

3.1 Datasets and Experimental Setup

We utilize three widely recognized dermoscopic datasets: ISIC-17 [6], ISIC-
18 [17], and ISIC-19 [IT]. ISIC-17 comprises 2,600 images across three classes:
Nevus (NV), Seborrheic Keratosis (SK), and Melanoma (MEL). ISIC-18 con-
tains 10,015 images spanning seven classes: MEL, NV, Basal Cell Carcinoma
(BCC), Actinic Keratosis (AKIEC), Benign Keratosis (BKL), Dermatofibroma
(DF), and Vascular Lesion (VASC). ISIC-19 includes 25,331 images with an
additional class, Squamous Cell Carcinoma (SCC). All datasets exhibit severe
class imbalance (imbalance factor > 50) and are split into an 80:20 train-test
ratio. For ISIC-17, we perform binary classification for Melanoma vs. others and
Seborrheic Keratosis vs. others, along with multiclass classification.

Each image is resized to (224 x 224) and normalized by % We employ
an ImageNet-pretrained DenseNet-121 backbone, trained using the Adam op-
timizer (learning rate: 0.0001) for up to 100 epochs. Spatial attention-guided
vector sampling is activated after 20 epochs to mitigate early adversarial ef-
fects. Experiments are conducted on Nvidia Tesla T4 GPUs (28GB RAM) using
Python 3.9 and TensorFlow Keras. Performance is evaluated using accuracy,
macro-averaged F1-score, recall, and precision.
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Table 1. Performance comparison across different ISIC datasets.

[Dataset] Method | F1 | Acc | Rec [ Prec ]
Zhang et al. [24] (Mel vs Others)| - 0.8370 | 0.5900 -
Zhang et al. [24] (SK vs Others) - 0.9080 | 0.7780 -
Ding et al. [7] (Mel vs Others) - 0.8620 | 0.6320 -
ISIC 17 Ding et al. [7] (SK vs Others) - 0.9280| 0.8330 -
Wei et al. [19] (Mel vs Others) - ]0.8620] 0.6620 -
Ours (Mel vs Others) 0.7933| 0.8486 (0.7675(0.7001
Ours (SK vs Others) 0.8044| 0.9092 |0.8428|0.7784
Li et al. [14] 0.7494 1 0.8594 | 0.7335 | 0.7777
Zhang et al. [25] 0.7676 | 0.8720 | 0.7301 | 0.8344
ISIC 18 Wang et al. [I8] 0.7952 ] 0.8542 | 0.8557 | 0.7320
Xu et al. [21] 0.7968 | 0.8442 |0.8595| 0.7499
Ours 0.8220|0.8833| 0.8094 |0.8351
Li et al. [14] 0.75130.8475 | 0.7189 | 0.7981
Yao et al. [23] 0.7508 | 0.8410 | 0.7483 | 0.7581
ISIC 19 Chu et al. [5] 0.7920 | 0.8820 |0.8700 -
Zhang et al. [25] 0.7946 | 0.8611 | 0.7657 |0.8322
Ours 0.8052(0.8853| 0.8130 | 0.7975

Table 2. Ablation study on ISIC datasets with different settings.

Setting ISIC 17 ISIC 18 ISIC 19
F1 Acc Rec F1 Acc Rec F1 Acc Rec

Baseline 0.6408 0.7187 0.6311 0.7256 0.8431 0.7221 0.7178 0.8022 0.7334
W/0 MICA 0.6957 0.7684 0.6947 0.7994 0.8798 0.7931 0.7945 0.8722 0.7802
‘W /O Vector Sampling 0.6994 0.7633 0.7984 0.7947 0.8638 0.8028 0.7988 0.8760 0.8051
W/O Lingep 0.6860 0.7450 0.7094 0.7869 0.8738 0.7627 0.7900 0.8685 0.7609
Heads = 1 0.6896 0.7600 0.6956 0.7871 0.8691 0.7789 0.7892 0.8701 0.7758
Heads = 2 0.6943 0.7733 0.6872 0.7938 0.8753 0.7865 0.7952 0.8775 0.7803
Heads = 3 0.7203 0.7921 0.7116 0.8220 0.8833 0.8094 0.8025 0.8814 0.8086
Heads = 4 0.7153 0.7867 0.7160 0.7920 0.8743 0.7781 0.7961 0.8780 0.7829
Sigma = 0.5 0.6700 0.7400 0.6908 0.7883 0.8748 0.7634 0.7832 0.8690 0.7605
Sigma = 1.0 0.6858 0.7567 0.6979 0.8220 0.8833 0.8094 0.8052 0.8853 0.8130
Sigma = 2.0 0.7203 0.7921 0.7116 0.7937 0.8783 0.7842 0.7904 0.8731 0.7760
Sigma = 4.0 0.6579 0.7381 0.6606 0.7866 0.8748 0.7731 0.7995 0.8802 0.7922
Cosine Similarity based Lindep 0.7133 0.7883 0.7063 0.7920 0.8753 0.7817 0.7941 0.8726 0.7779
Best Configuration 0.7203 0.7921 0.7116 0.8220 0.8833 0.8094 0.8052 0.8853 0.8130

3.2 Analysis of Results

In Table [1} the proposed framework outperforms existing methods, with an av-
erage increase of 1-2% in Fl-score, which is the most reliable metric in highly
imbalanced settings.

Table 2] shows ablation study results with different configurations. First, we
evaluate the performance of the backbone without enhancements, where the
baseline achieves an Fl-score of 0.7256 on ISIC 18. Gradually increasing the
number of heads from 1 to 4 results in a performance improvement. The highest
performance is observed with 3 heads, yielding an F1-score improvement of 9.6%
over the baseline. More heads enrich feature representation but introduce two
issues: increased feature complexity in the post-CNN phase, leading to overfit-
ting, and redundant features across heads. To address this, we experiment with
and without the Linqep loss, observing a 3.3% improvement in F1-score on ISIC
18.
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Fig. 3. Cross-correlation matrix representing the mean cosine similarity among head-

level features (trained on ISIC-18). The left matrix corresponds to training without the
independence criterion, while the right one includes it.

0.0083 0.053

We qualitatively analyze the pairwise cross-correlation among all attention
heads. In Figure 3, we observe a strong correlation between heads when trained
without L;n4ep. In contrast, when the head-level features are decorrelated, each
head captures distinct information. To clarify the essence of the HSIC criterion,
rather than using a naive dot product-based correlation, we replace HSIC with
cosine similarity and observe a steep decrease in performance (0.8220 to 0.7920 in
terms of F1). HSIC captures higher-order correlations, accounting for the covari-
ance of similar neurons even if they reside at different neuron indices. We use the
RBF kernel to transform features, where the bandwidth o is critical. A smaller
o makes the kernel sensitive to minor variations, while a larger ¢ smooths the
dependency structure. We conduct extensive experiments with different o values
to select the optimal one for each dataset (copt = 2.0, 0opt = 1.0 & oopr = 1.0 are
optimal choices for ISIC-17,18 & 19 datasets respectively), as it depends on the
feature-level variance. Furthermore, to demonstrate the contribution of spatial
attention guidance, we observe a clear increase in F1 scores when combined with
feature-level augmentation (2.5%, 1.5%, 1% respectively in each dataset).

4 Conclusion

We propose BIIGMA-Net, integrating MICA module to enforce independence
across projection heads by minimizing mutual information, reducing feature re-
dundancy. To mitigate spurious background noise in dermoscopic datasets, we
generate a hybrid feature map by selectively shuffling non-salient vectors using an
inverted saliency map, ensuring classification consistency. Novelity of our work
relies on combining an independence criterion in CNN-based attention heads
with background agnosticism. Experiments on ISIC-17, ISIC-18, and ISIC-19
confirm its effectiveness. In the future, we can include adaptive frameworks for
kernel bandwidth that dynamically adjust to feature distributions and investi-
gating methods to enhance robustness against adversarial perturbations.
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