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Abstract. Multi-modal brain imaging with MRI, CT, and PET has sig-
nificantly advanced our understanding of cognition and neurodisease by
providing complementary information. However, constraints on scan time
and cost often result in missing critical high-quality sequences. Existing
cross-modality synthesis methods are typically task- or modality-specific,
leading to performance degradation when applied to heterogeneous real-
world imaging data. Here, we propose UniSyn, a unified framework ca-
pable of synthesizing target imaging modalities with specific acquisition
parameters from any available ones, guided by metadata. UniSyn first
learns robust metadata representations through image-text alignment
on large-scale multimodal neuroimaging datasets. We then introduce a
cross-modality synthesis framework that leverages learned metadata rep-
resentations to guide the generation of metadata-specified target images.
To enhance interpretable metadata-driven control over image synthesis
across diverse protocols, we design a dual-parameter arithmetic opera-
tion that explicitly integrates source and target metadata into the image
translation process. Extensive experiments on multi-institutional brain
imaging datasets demonstrate that UniSyn surpasses the existing cross-
modality synthesis approaches in both quantitative fidelity and clinical
relevance, enabling the generation of missing imaging counterparts tai-
lored to specific clinical and research needs.

Keywords: Multi-modal medical image - Brain image synthesis - Vision-
language model - Metadata-injecting prompt.

1 Introduction

Neuroimaging is essential for diagnosing and studying neurological disorders.
Different modalites such as Magnetic Resonance Imaging (MRI), Computed To-
mography (CT), and Positron Emission Tomography (PET) offer complemen-
tary insights into brain structure, function, and metabolism. For instance, MRI
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provides high soft-tissue contrast without ionizing radiation, CT is optimal for
detecting hemorrhages or calcifications, and PET enables metabolic assessments
crucial for neurodegenerative diseases. However, acquiring multiple modalities
for every patient is often impractical due to financial constraints, radiation ex-
posure, and scanning duration limitations. The absence of a required modality
can impair diagnostic accuracy and research applications, highlighting the need
for a robust cross-modality synthesis framework capable of generating missing
imaging counterparts.

Existing cross-modality synthesis methods predominantly focus on specific
translation tasks, such as synthesizing PET from MRI [1,2], CT from MRI [3],
or inter-sequence generation [4-6], isotope tracer conversion [7], and dose mod-
ulation within the same modality [8,9]. However, these approaches suffer from
key limitations: (1) They lack generalizability across diverse imaging modalities
and are constrained to fixed source-target pairs, limiting their applicability in
real-world clinical scenarios. (2) Most methods operate in a purely image-driven
manner, neglecting valuable non-imaging metadata such as clinical reports and
imaging protocols that could enhance synthesis quality and interpretability. Pre-
vious work [10] leverages textual imaging parameters of target modality to syn-
thesize desired MRI sequence from available ones, albeit its satisfactory synthesis
performance, it is limited to inter-conversion between MRI sequences and relies
on cross-attention mechanisms [11] that are sensitive to hyperparameter config-
urations, limiting robustness and interpretability of feature space manipulation.
To address these challenges, we propose UniSyn, a unified generative framework
that enables universal cross-modality brain image synthesis, guided by source
and target textual metadata. UniSyn consists of two key components: (1) a
metadata prompt learning network, NeuroCLIP, pre-trained on large-scale mul-
timodal datasets, to learn a textual representation aligned with neuroimaging
data, and (2) a cross-modality synthesis network, which generates anatomically
and contrast-preserving target images guided by learned text embeddings. By ex-
plicitly disentangling modality-specific features from input images and integrat-
ing them with target text embeddings, UniSyn achieves improved generalization
and synthesis fidelity. Extensive experiments on multi-institutional brain imag-
ing datasets demonstrate that UniSyn outperforms existing methods in both
quantitative synthesis fidelity and qualitative clinical relevance, representing a
significant step toward a generalized medical image translation paradigm with
broad applications in neuroimaging-based diagnosis and research.

2 Method

The overall framework of Unisyn is shown in Fig. 1. Specifically, we achieve
text-guided image synthesis through two stages: the metadata prompt learning
network (NeuroCLIP) and the generative foundation model (GFM).
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Fig. 1. Overview of the Unisyn framework: (a) The training of NeuroCLIP model; (b)
The generative foundation model

2.1 NeuroCLIP

Recent advances in large language models (LLMs) have demonstrated remark-
able capabilities in understanding and processing natural language across gen-
eral domains. Models like GPT-4 [12] and BERT [13] have achieved unprece-
dented performance in various natural language processing tasks. However, these
general-purpose LLMs often struggle with domain-specific technical language,
particularly in highly specialized medical fields.

Even domain-adapted models like BiomedCLIP [14], which are specifically
trained on biomedical data, show limitations in comprehending specialized neu-
roimaging parameters such as TR (Repetition Time), TE (Echo Time), and
flip angle. This gap in technical comprehension poses a significant challenge for
accurate medical image synthesis and analysis.

Therefore, we propose NeuroCLIP, a specialized text encoder designed specif-
ically for neuroimaging metadata comprehension. In Stage 1, to extract effec-
tive semantic information from textual imaging parameters and demographic
attributes associated with each image, we leverage the contrastive learning strat-
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egy to pretrain a text encoder that is specifically designed for 3D brain medical
images’ metadata understanding.

Construction of image and text prompt dataset The appearance of brain
medical images exhibits a strong correlation with both biological attributes (e.g.,
age and gender) and imaging parameters. To effectively leverage these factors as
guidance of GFM, we prioritize imaging parameters that most influence image in-
tensity and contrast, and design structured textual prompts for different imaging
modalities under the guidance of senior radiologists. Image samples along with
their corresponding textual descriptions used for training the NeuroCLIP are
presented in Fig. 1(a).

When specific imaging parameters are unavailable, "None" is used as a place-
holder to maintain a consistent prompt structure. However, source and target
modality information is always explicitly provided to ensure accurate modality
translation.

Contrastive learning Pre-training To enable text representations to effec-
tively guide cross-modality image synthesis and ensure that the generated images
accurately match the specified parameters, it is essential for the text encoder to
comprehensively capture the relevant imaging metadata. To achieve this, the
image and text encoders are jointly trained on paired image-text samples using
the contrastive learning strategy. We categorize the dataset based on imaging
parameters and set the batch size accordingly. During each forward pass, a batch
B consists of one sample from each class, and the embedding distance between
paired image-text samples is minimized, while the distance between non-paired
samples is maximized by computing contrastive loss.

The model architecture is built upon [10], with the encoded token length
extended from 90 to 224, thereby improving the text encoder’s ability to process
longer text prompts and support diverse downstream tasks.

Upon completion of the Stage 1 training, the pretrained text encoder is frozen
and subsequently utilized in Stage 2.

2.2 The generative foundation model

Stage 2 focuses on generating the target image I; from any available source
image I by leveraging both source Ty and target text prompts 7; as guidance.
As illustrated in Fig.1(b), the synthesis process begins by encoding I, Ty, and
T; into corresponding feature embeddings, Ts and T} are then used to guide
the image feature transformation process to obtain the target image feature f;.
Finally, f; is reconstructed to the target image I, by the image decoder.

Text-guided Representation Learning The representation learning process
begins with encoding source text prompts into feature vectors. Inspired by [15],
we decompose medical image volumes into two fundamental components: content
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features that capture anatomical structures, and contrast features that encode
modality-specific characteristics.

To effectively model the modality-specific contrast characteristics, we intro-
duce a novel mapping mechanism that transforms text features into two key pa-
rameters: a scaling factor («) and a bias term (). Specifically, the text prompt
is first encoded into a 1536-dimensional feature representation, where the first
768 dimensions are assigned to a and the remaining 768 dimensions to 8. These
parameters are designed to capture the essential aspects of cross-modality vari-
ations: o models contrast differences between imaging modalities, while 8 ac-
counts for baseline intensity shifts arising from diverse acquisition protocols.

Our framework implements a systematic transformation pipeline for cross-
modality synthesis: First, we normalize the source image feature fs (768 dimen-
sions) to obtain fy by applying: fo = (fs — Bs)/as. This normalization step
isolates the modality-independent anatomical representation. Subsequently, we
synthesize the target feature f; by incorporating the target modality characteris-
tics: fr = oy fo + B, where ay and (; are the scaling and bias parameters specific
to the target modality. Finally, the transformed feature f; is processed through
a decoder to generate the synthesized target image I,. This formulation enables
explicit and interpretable modulation of the image feature space, facilitating
effective cross-modality synthesis while preserving anatomical integrity.

Model Architecture

Image Encoder : The image encoder consists of 24 residual blocks (ResBlocks),
with residual connections between each block to facilitate gradient propagation.
Each ResBlock consists of two sequential 3 x 3 convolutional layers, followed by
a ReLU activation layer. The encoder is designed with a channel dimension of
1024, ensuring sufficient capacity for feature extraction.

Image Decoder : The decoder is a four-layer fully connected network with ReLLU
activation. The dimensions of each layer are 2048, 1024, 1024, and 8, respectively.
The final layer with 8 output channels matches the input channel number of the
image encoder, facilitating the image synthesis from processed feature maps.

Loss Functions To strengthen the constraint on general feature representation
learning, we incorporate a cyclic synthesis strategy during training. Specifically,
within each iteration, the source image and target image are utilized to generate
each other, and their encoded features F), and F), are enforced to be consistent.
We impose a pixel-level similarity as the supervisory signal.

L= |IFe—Fylh (1)

We also introduce a synthesis loss as a supervisory signal for cross-contrast trans-
lation by directly comparing the synthesized images with their corresponding
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ground truth counterparts. The synthesis loss is then computed as the L1-norm

of the residual error: .
Lo=>_[IXi = Xilx (2)

Combining the two loss terms above, we derive the overall loss as:

Etotal = )\f»cf + )\s»Cs (3)

3 Experiments and Results

3.1 Datasets and Data Preprocessing

Description of the GFM Dataset

Huashan Dataset. The Huashan (HS) dataset consists of 1,002 participants for
the Alzheimer’s Disease Study, recruited from both the Universal Medical clinic
and Shanghai Sixth People’s Hospital, China. From this cohort, we selected
a subset of 847 individuals who all underwent T1-weighted (T1w) MRI scans.
Among these participants, the availability of additional imaging modalities—CT
scans, amyloid-beta (AS)-PET scans, Fluorodeoxyglucose (FDG)-PET scans,
and other MRI sequences, including T2-weighted (T2w) and Fluid-Attenuated
Inversion Recovery (FLAIR)—varied on a per-subject basis.

Zhongshan Dataset. The Zhongshan (ZS) dataset comprises 114 participants
from Zhongshan Hospital, Fudan University, enrolled for the neuro-degradation
study. Each subject includes T1lw, T2w, and FLAIR MRI sequences, CT, and
FDG-PET scans acquired using United Imaging Healthcare (UTH) scanning sys-
tems.

Description of the NeuroCLIP Dataset. For NeuroCLIP pretraining, ex-
cept for the above two datasets, we use a large-scale dataset containing 47,841
3D scans collected from multiple centers, covering various imaging parameters.
These datasets include T1w, T2w, FLAIR, PD, SWI, T2Star, TICE MRI se-
quences, PET imaging with FDG, AV45, and TAU deposition, and CT.

For image preprocessing, all imaging modalities are spatially registered to
the corresponding subject’s T1w image, preserving its original spatial resolution.
Subsequently, skull stripping is performed on all images. The dataset is then split
into training, validation, and test sets using a 7:1:2 ratio.

3.2 Implementation Details

In our experiments, both the NeuroCLIP and GFM are trained on a single
NVIDIA A100 GPU with 40GB memory. For NeuroCLIP, both image and text
encoders are trained from scratch for 100 epochs using the Adam optimizer [16].
For the GFM, its image encoder and decoder are trained from scratch, with an
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input and output patch size of 8 x 64 x 64. GFM is trained for 300 epochs using
the Adam optimizer, with a batch size of 8, an initial learning rate of 1074,
and a weight decay by 0.5 every 100 epochs. We empirically set Ay = 0.1, A,
= 1.0 in our experiments. To comprehensively evaluate model performance on
image synthesis, we employed Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) as quantitative metrics.

3.3 Comparison with State-of-the-art Methods

We conducted comprehensive experiments on the HS and ZS datasets to eval-
uate the effectiveness of our framework against three competitive state-of-the-
art (SOTA) medical image synthesis models: 1) PTNet [5], an advanced 3D
transformer-based model for infant brain MRI sequences synthesis; 2) BME-
X [17], a unified model for the motion correction, resolution enhancement, de-
noising and harmonization of MR images; and 3) TUMSyn [10], which utilizes
textual metadata as prompt for any MRI sequences synthesis. All methods are
in their default configuration.

Quantitative Comparison Analysis. Table 1 presents the quantitative eval-
uation of all methods across six clinically significant tasks. For PET image syn-
thesis tasks, we synthesized FDG-PET images for the ZS dataset and AV45-PET
images for the HS dataset. Our proposed framework consistently achieves the
highest PSNR and SSIM scores across all tasks, outperforming three SOTA
methods. This performance enhancement highlights that explicit integration of
both source and target textual metadata, along with the joint training strategy,
can collectively empower the model to capture robust shared features across
varying imaging parameters, thereby mitigating noise and artifacts introduced
during cross-modality transformations.

Qualitative Comparison Analysis. To qualitatively assess the effectiveness
of our proposed framework, we conducted visual comparisons across four repre-
sentative tasks: T1w-to-CT, T1lw-to-PET, CT-to-PET, and T1w-to-FLAIR. As

Table 1. Quantitative comparison across different tasks.

ZS T1-CT ZS CT-PET ZS T1-PET HS T1-CT HS T1-FLAIR HS T1-PET

PTNet PSNR  25.78+1.19 24.63+0.38 25.8940.51 24.9142.22 27.21+3.01 23.8942.32
SSIM  0.918+0.033  0.885+0.020  0.906+0.027  0.905+0.027 0.940+0.048 0.889+0.034
BME-X PSNR 24.81+1.21 23.56+0.51 24.714+0.64 23.85+2.44 25.83+3.13 22.534+2.37

SSIM  0.902+0.030  0.872£0.026  0.896+0.029  0.894+0.040 0.933+0.049 0.871+£0.037

TUMS PSNR  27.56+1.29 24.9040.49 26.98+0.43 26.33£2.28 28.1443.07 24.784+2.18
ISyn
v SSIM  0.930£0.034  0.89340.021  0.913+0.027  0.915+0.033 0.958+0.042 0.894£0.028

PSNR 28.04+1.36 25.75+0.53 27.45+0.79 26.78+2.32 29.05+2.99 25.47+2.14

Unisyn
Y SSIM  0.941+0.034 0.909+0.028 0.926+0.032 0.927+0.035 0.965+0.039 0.907+0.027
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Fig. 2. Results of four cross-modality synthesis tasks from different methods.

illustrated in Fig. 2, the synthesized images generated by UniSyn closely resemble
the ground truth (GT), demonstrating superior anatomical detail preservation
and contrast consistency compared to three SOTA methods. These findings align
with the quantitative evaluation results. The same conclusion is provided by the
error maps (second row of each task), which highlight the reduced discrepancies
in UniSyn’s outputs.

3.4 Ablation Study

To substantiate the effectiveness of our text-guided representation learning and
the jointly training strategy, we conduct ablation experiments by replacing the
baseline task-specific model, which employs a cross-attention mechanism, with
our proposed arithmetic operation. Additionally, we compare the unified training
strategy that incorporates all imaging modalities and tasks.
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Table 2. Comparison of baseline and Unisyn models

Baseline Unisyn (specific task) Unisyn
Task PSNR SSIM Inference time (s) PSNR SSIM Inference time (s) PSNR SSIM
CT-Tlw  25.5342.09 0.879+0.018 72.8 26.01£2.03 0.893%0.018 50.2 26.54+2.19 0.901+0.021
Tiw-T2w 29.394+2.16 0.938+0.025 81.1 30.43£2.17 0.951£0.027 58.5 30.74+2.24 0.958+0.028

As detailed in Table 2, the baseline method, which relies on cross-attention
mechanisms for target text prompt and source image fusion (Baseline), our arith-
metic operation (Unisyn (specific task)) achieves mean improvements of 1.9% in
PSNR and 1.6% in SSIM across both tasks. Furthermore, applying the joint
training strategy further enhances 0.4 dB PSNR and 0.008 SSIM.

These findings indicate that employing arithmetic operations for image-text
fusion significantly reduces the model’s learning burden regarding complex in-
teractions between these modalities. Concurrently, the integration of textual
metadata facilitates unified training across heterogeneous imaging modalities,
subsequently enhancing the robustness of synthetic image generation.

4 Conclusion

In this study, we propose UniSyn, a universal framework for the synthesis of di-
verse neuroimaging modalities from any available ones, guided by textual meta-
data. By initially pre-training a domain-specific text encoder, UniSyn effectively
captures the factors that differentially influence image contrast and anatomical
content from metadata, enabling unified, parameter-customized image synthesis.
To seamlessly integrate imaging and non-imaging data, we introduce an arith-
metic operation that enhances the precision and robustness of source-target im-
age feature mapping. Extensive experiments on heterogeneous datasets demon-
strate UniSyn’s ability to generate high-fidelity 3D brain MRI, PET, and CT
volumes, highlighting its potential to address the challenge of missing multimodal
neuroimaging data in clinical and research settings.
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