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Abstract. Although the SAM2 foundational segmentation model ex-
cels in natural images, its direct adaptation to 3D medical imaging (e.g.,
CT/MR) remains underexplored, particularly for zero-shot generaliza-
tion. We identify two critical barriers when treating medical volumes as
pseudo-video sequences: (1) the non-convexity of anatomical structures
leading to slice-wise mask discontinuities; (2) difficulty in effectively gen-
eralizing the dependencies between long-term and short-term memory.
To address these problems, we propose a stochastic connected component
propagation strategy for handling mask discontinuities during training,
coupled with a dynamic memory window search mechanism during infer-
ence. Extensive experiments demonstrate the effectiveness of our method,
achieving a 16% Dice score improvement over conventional fine-tuning
in the unseen classes of TotalSegmentator dataset. Furthermore, our ap-
proach generalizes well across modalities (CT/MR) and lesion types,
and it performs comparably to or outperforms previous methods on the
ULS23 and CHAOS benchmarks.
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1 Introduction

The SAM2 [9], has received significant attention and has been successfully adapted
to various domains [7,8,11]. It leverages a memory module to integrate histor-
ical memories into the segmentation of current frames, enabling effective video
segmentation.

This study aims to adapt SAM2, a model originally designed and trained on
large-scale video data, to 3D medical image segmentation (primarily CT/MR),
with the goal of establishing a universal framework for segmentation in medi-
cal volumetric data. Our investigation focuses not only on performance within
trained categories, but particularly emphasizes the model’s zero-shot capabilities



on unseen anatomical structures. The zero-shot generalization capability holds
significant clinical value in addressing the scarcity of annotated medical data.
By eliminating the need for task-specific fine-tuning, it can directly segment rare
anatomical structures.

Although 3D medical volumes can be processed as pseudo-video sequences,
two critical challenges arise. First, unlike natural videos in which object masks
are typically temporal continuous, non-convex anatomical structures in med-
ical volumes exhibit mask discontinuities across slices (see Figure 1), causing
the model to erroneously bias segmentation towards visually similar regions re-
gardless of spatial separation. Second, the memory dependency mechanism faces
a trade-off: a large memory window (e.g., size 6) struggles to distinguish fine-
grained structures like adjacent ribs, while a small window (e.g., size 1) degrades
performance on complex boundaries (Figure 2). We hypothesize that effectively
generalizing long-term and short-term memory dependencies requires large-scale
training data. Unfortunately, the scarcity of annotated medical image segmen-
tation data hinders the memory module’s generalizability, ultimately reducing
zero-shot performance.

Fig. 1. Left: 3D visualization of a stomach. Slicing upward (in the arrow direction)
progressively reveals internal structures. Right: 2D slices with overlaid ground truth
masks. Discontinuities occurs in the third slice, where the mask abruptly detaches from
the previously tracked region, highlighting segmentation challenges.

Significant research efforts have focused on adapting the SAM2 for medical
image segmentation. MedicalSAM2 [12]proposes a self-sorting memory bank that
dynamically selects informative embeddings through confidence and dissimilar-
ity metrics. SAM2-Adapter [2] incorporates lightweight adapters in the image
encoder, enabling joint fine-tuning with the mask decoder. RFMedSAM?2 [10]
introduces both an adapter module and a multi-stage automatic prompt refine-
ment framework for medical image segmentation. However, these works do not
focus on addressing the aforementioned challenges.

To address these challenges, we propose SAM2 with stochastic Propagation
and Memory search (SAM2-ProMem), which introduces two key innovations:
(1) a stochastic propagation strategy that enforces spatial coherence during
training by retaining only one connected component in cases of mask discontinu-
ities; and (2) an adaptive memory search mechanism that dynamically optimizes
the integration of historical context during inference by enumerating multiple



candidate memory window sizes and retaining the top-scoring predictions for
each slice.

Experimental results demonstrate a 16% increase in Dice score on unseen
classes of the TotalSegmentator dataset*, compared to direct fine-tuning. Fur-
thermore, comprehensive benchmarking on the ULS23 lesion segmentation dataset
and the CHAOS MR dataset shows that our approach performs comparably to
or better than state-of-the-art methods.
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Fig. 2. (a) SAM2 model trained with M3D dataset (memory window size=6) — green
contours (ground truth), red (predictions), yellow (overlap). (b) SAM2 trained with
M3D dataset (memory window size=1). (c) the proposed SAM2-ProMem method. For
rib right 4 segmentation, (a) exhibits duplicate predictions, whereas (b) shows better
results. Conversely, heart myocardium segmentation in the right image, (a) yields better
segmentation while (b) performs very poorly. (c) demonstrates the robustness of SAM2-
ProMem. Best viewed in color.

2 Method

2.1 Stochastic Propagation

The SAM2 architecture, originally developed for video segmentation, processes
2D frames sequentially for mask prediction. To adapt this framework for 3D
medical volumes, we reinterpret one anatomical axis (e.g., axial or sagittal) as
a pseudo-temporal dimension, thereby preserving SAM2’s native slice-wise pro-
cessing paradigm. However, as demonstrated in Figure 1, conventional subse-
quence sampling during training may induce mask discontinuities between adja-
cent slices. This artifact arises from the non-convex morphology of anatomical
structures along the pseudo-temporal axis—a phenomenon particularly evident

* https://zenodo.org/records/10047292



in complex organ geometries. These discontinuities force the network to predict
spatially fragmented regions based on a single preceding region (see slices 2 to
3 in Figure 1), which introduces domain-specific biases that compromise zero-
shot generalization capability. To address this challenge, we propose a stochastic
propagation strategy comprising three steps:

1. Subsequence Sampling: Sample a subsequence from the 3D masks of a certain
class along the pseudo-temporal axis.

2. Discontinuity Detection: Detect discontinuities through connected compo-
nent analysis. Note that the concept of discontinuity is dependent on the
starting slice. For instance, if the starting slice is 1 or 2 (as shown in Fig-
ure 4), then slice 3 is considered a discontinuity; however, if the starting slice
is 3 or 4, no discontinuity is detected because the upper part in slice 3 or 4
normally disappears when propagating to slice 2.

3. Component Retention: If discontinuities are detected, a single spatially co-
herent component is stochastically retained during the generation of training
instances (see Figure 4).

2.2 Memory Search
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Fig. 3. This figure illustrates the pipeline of the memory window search algorithm.
For simplicity, the diagram depicts the scenario with two candidate memory banks.
When inferring slice i, the algorithm enumerates combinations of memory banks and
the number of historical memories used to compute memory attention. For each com-
bination, it decodes a mask paired with a confidence score. The two highest-scoring
predictions are globally selected to update their respective memory banks, while lower-
scoring predictions are discarded. The algorithm then proceeds to infer slice i+1 using
the updated memory banks. Best viewed in color.



As shown in Figure 3, we employ beam search during inference to dynamically
determine the optimal memory window size from a candidate pool comprising
N window sizes. The process begins with a single memory bank configuration
(not shown in the figure). By iteratively enumerating different window sizes,
the algorithm generates multiple predictions, each comprising a segmentation
mask and an associated IoU score. The mask with the highest IoU score is
selected as the final prediction for the current slice, while the memory states
corresponding to the top-k predictions (ranked by IoU) are preserved, forming
k distinct memory bank configurations.

When predicting the i-th slice, the algorithm sequentially evaluates all k
memory banks. For each configuration, it further explores possible window sizes
to compute memory attention, yielding kN candidate results. After globally
ranking these candidates, the top-k highest-scoring predictions are retained to
update the memory banks for inference on the (i+1)-th slice.

Empirical validation demonstrates that setting k = 2 and N = 2 achieves
an optimal trade-off between efficiency and computation. See Figure 5 for two
search options. The prediction process continues until the probability of object
appearance falls below 0.5, as determined by the configuration with the highest
ToU prediction.

Notably, directly applying beam search with the original SAM2 architec-
ture—trained on fixed window sizes—resulted in suboptimal zero-shot perfor-
mance. To address this limitation, we introduced a novel augmentation strategy
during training that stochastically samples memory window sizes and selectively
incorporates prompt slice’s memory into the memory attention computation.
Specifically, the window size is randomly chosen from 1 to 6, and the decision to
include the prompt slice memory in the memory attention computation is also
determined stochastically.
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2.3 Evaluation

During model evaluation, we used a two-stage bidirectional inference protocol.
The ground truth mask from the middle slice served as the initial prompt. For-
ward inference continued until an empty prediction was encountered, after which
we cleared the memory banks and performed reverse inference until termination.

3 Experiments

3.1 Dataset

Training Dataset The M3D-Seg dataset [1], a large-scale CT segmentation
dataset, contains 25 sub-datasets with 5,772 3D images and 149,196 mask an-
notations. Each sub-dataset is split into training and testing sets. For training,
we used the training splits from 24 sub-datasets, excluding Subset 11 (the To-
talSegmentator dataset).

Evaluation Dataset. We conducted two types of evaluations: 1. In-domain
evaluation. The validation split of the 24 sub-datasets. 2. Zero-shot evalua-
tion. Unseen classes from the validation split of M3D Subset 11 were selected
due to their diversity and novel class distribution. To further assess zero-shot
performance on lesions and MR modality, we also evaluated on the ULS23[4]
and CHAOS [5] datasets. If not denoted, average Dice score is reported.

3.2 Implement Details

The SAM2 tiny model® is used as the pre-trained model for efficiency. Images are
resized so that their longer side is 512 and padded on the shorter side accordingly.
A random class is chosen to sample an 8-frame subsequence for training. The
model is trained for 28,200 iterations on 8 NVIDIA A10 GPUs (2 sequences per
GPU) with the remaining optimization settings identical to SAM2.

3.3 Ablation Study

Impact of Starting Slice Selection. Using the BTCV subset [6], we analyzed
how the starting slice position affects performance. As shown in Table 1, selecting
a slice near the object’s center achieved the highest dice score. Thus, we adopted
the central slice and its ground-truth mask as the default prompt.

Role of Stochastic Propagation. Table 2 reveals that naive fine-tuning
significantly improves performance. Notably, while disabling stochastic propaga-
tion slightly decreased in-domain Dice by 0.4% (Table 2 (b) vs. Table 2 (c)), it
reduced zero-shot Dice by 12%, validating stochastic propagation’s importance
for zero-shot generalization.

Memory Window Search Hyperparameters. For efficiency, we evalu-
ated memory configurations on BTCV [6] (in-domain evaluation) and 30 cases

® https://dl.fbaipublicfiles.com /segment _anything 2,/072824/sam2 hiera_tiny.pt



Prompt position| oy | g3 | 05 | 0.7 | 0.9
fine-tune with SP 0.7632(0.8283|0.8357(0.8343|0.7932

Table 1. Ablation of different prompt slice positions. The header row indicates the

normalized position of the prompt slice. For example, 0.5 denotes a prompt slice located

at the middle slice of the class ground truth mask.

Method

(a)SAM2-Tiny(512)|(b) fine-tune w/o SP|(c)fine-tune with SP
In-domain 0.4621 0.7919 0.7879
Zero-shot, 0.4649 0.5304 0.6535

Table 2. Ablation of stochastic propagation. SP is short for Stochastic Propagation.

from M3D Subset 11 (zero-shot evaluation). Table 3 and Table 4 demonstrate
that including prompt slice memory in memory attention harms zero-shot per-
formance. Since the memory bank size k had minimal impact, we set k=2.

In-domain|Zero-shot
0.8320 0.7121

In-domain|Zero-shot
w/ prompt slice | 0.8383 0.6748 0.8335 0.7126
w/o prompt slice| 0.8335 0.7126 0.8324 0.7085
Table 3. Ablation of hyper-parameters of ~ Table 4. Ablation of hyper-parameters
search method. k=2 and N=2. of search method, without adding
prompt.

W N =R

Synergy of Memory Augmentation and Search. Table 5 highlights
that combining memory augmentation with search yields a 4% zero-shot Dice
improvement, whereas using either alone provides marginal gains ( 0.6%). This
underscores their complementary roles.

aug. |search|zero-shot Ground-truth range|Search|Zero-shot

0.6535 (a) 0.6535

v 0.6627 (b) v 0.7035

v 0.6595 (c) v 0.7551

v v 0.7035 (d) v v 0.7865
Table 5. Ablation of mem- Table 6. Range means limit the prediction in the
ory augmentation and search range of ground truth along the pseudo-temporal

mechanism. axis.

Mask Quality vs. Stop Prediction. From the comparison between (a)
and (b) in Table 6, it can be seen that introducing the search method improves
the dice score by 5%. However, it is unclear whether this improvement comes



from an enhancement in the 2D mask prediction or from better prediction of the
propagation stop position. To clarify this, we fixed the propagation position to
the ground-truth range. Compared to (c) and (d), the search method still im-
proved the dice score by 3%, suggesting that it mainly enhances the performance
of the 2D mask prediction.

3.4 Comparing with Other Methods

Due to limited resources, we train our model on SAM2-Tiny with a 512-input
configuration, while other SAM2-based methods [12, 2, 10] use larger models and
higher resolutions. This makes fair comparison challenging, especially given the
significant differences in dataset settings. Hence, we primarily compared our
work with SegVol [3], which uses a similar data configuration.

In-domain Comparison. Compared to SegVol (trained on M3D), our method
shows clear superiority (Table 7). Notably, SegVol was excluded from zero-shot
comparison as it used M3D Subset 11 (our zero-shot test set) during training.
We use the official SegVol code® with box and text prompts to evaluate.

SegVol SAM2-ProMem
Liver |0.8570(0.8319,0.8819) 0.9279(0.9150, 0.0431)
Spleen |0.8009(0.7702,0.8256) 0.9157(0.8908,0.9482)
Zeroshot | NJA 0.7035 1 kiqney|0.8004(0.7256,0.8452) 0.9234(0.9061,0.9411)
Table 7. In-domain and g piq00010.8146(0.7593,0.8620) 0.9227(0.9018,0.9513)
zero-shot - comparison  in Table 8. CHAOS MR evaluation in median value of Dice
the M3D dataset. score, i.e. ‘Median values (First quartile, Third quartile)’

SegVol Ours
In-Domain|0.6950 0.7732

Zero-shot Comparison. On ULS23 [4], our method achieves competitive
median Dice scores (Table 9). For cross-modality evaluation on CHAOS [5]
(MRI), we outperform SegVol by a large margin (Table 8), demonstrating strong
lesion segmentation and MR adaptation capabilities.

MedSAM SAM-MED2D SAM-MED3D SegVol SAM2-ProMem
DeepLesion3D | 0.7680 0.3258 0.2386 0.7065 0.7557
BoneLesion 0.6896 0.1947 0.4447 0.6920 0.7416
PancreasLesion| 0.6561 0.5548 0.5526 0.7265 0.6235
Average 0.7046 0.3584 0.4120 0.7046 0.7069

Table 9. ULS23 dataset evaluation in median value of Dice score.

5 https://github.com/BAAI-DCAI/SegVol
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Conclusion

In this work, we bridge the gap between video-oriented SAM2 and 3D medical
image segmentation by addressing two critical challenges: (1) discontinuities in
consecutive masks during training, and (2) the balance between long-term and
short-term memories. Through our proposed stochastic propagation strategy and
the memory window search mechanism, we achieve robust zero-shot generaliza-
tion across diverse medical targets, including lesions and different modalities.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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