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Abstract. Distinguishing progressive mild cognitive impairment (pMCI)
from stable MCI (sMCI) is crucial for timely treatment of Alzheimer’s
disease (AD), yet it is challenging due to inherent class imbalance and
limited data. While recent data synthesis methods have shown success-
ful results, they often disregard distributional differences between groups
and individual heterogeneity in disease progression. Also, they treat the
whole-brain as a unified entity, overlooking region-specific features de-
spite their varying associations with AD. To address this, we propose
a novel end-to-end framework that augments MCI data and predicts
their future conversion to AD. This is realized by using adversarial at-
tacks that directly control data points in the feature space considering
group differences. The attacks are adaptively applied with region-wise
learnable attack intensities and subject-specific attack steps, which are
flexibly adjusted based on each subject’s observation interval. Moreover,
we introduce a trajectory constraint that ensures the attacked (i.e., aug-
mented) data follow plausible disease progressions and preserve realistic
neurodegeneration patterns. Extensive validations on two AD biomarkers
across three classifiers show our method’s superiority over six baselines.

Keywords: Adversarial attack · Data augmentation · Data imbalance.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder and a leading cause of
dementia [15, 32]. Before the onset of AD, patients first experience mild cogni-
tive impairment (MCI) [20], a transitional stage between normal aging and AD.
While some MCI patients remain cognitively stable over time (sMCI), others
progress to AD (pMCI), making early identification of high-risk patients crucial
for timely intervention. However, the annual conversion rate from MCI to AD is
only 5-10% and many subjects with MCI do not progress to AD even after 10
years of follow-up [18, 24]. This naturally causes a substantial class imbalance
between sMCI and pMCI in neuroimaging studies [5, 17, 22], which eventually
hinders the development of reliable predictive models for pMCI identification.
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Fig. 1: Group-, subject- and ROI-level data analyses in the ADNI study [22]. (Left)
Amyloid and FDG SUVR statistics for the sMCI, pMCI, and AD cohorts. (Middle)
t-SNE visualization of disease trajectories based on Amyloid SUVR, showing distinct
progression patterns across subjects. (Right) Amyloid SUVR distributions of two ROIs
in the pMCI cohort, showing regional variations in longitudinal disease progression.

To address this issue, data augmentation and generative models have been
studied. However, typical augmentation methods such as noise injection [30,34]
and interpolation [21,23] overlook distributional differences between groups and
individual variability in disease progression. As shown in the left panel of Fig. 1,
AD biomarkers in the ADNI study [22] exhibit sequential distributional shifts
from sMCI to pMCI to AD, indicating that pMCI inherently has more AD-
related features than sMCI. Moreover, MCI-to-AD transition speeds vary across
subjects, where patients who develop AD earlier tend to locate closer to AD in
the disease spectrum compared to those who progress more slowly, as shown in
the second panel of Fig. 1. Yet, existing augmentation methods disregard these
variabilities and apply generic transformations (e.g., adding random noises or
blending pMCI data), without considering group- and individual-level hetero-
geneity.

On the other hand, generative models such as GANs [6, 31], VAEs [14, 29],
and diffusion models [3, 11, 28] can learn these differences with a conditional
training scheme by using disease stages and observational intervals as conditions.
However, they often overlook brain regional variations in disease progression. As
illustrated in the right panel of Fig. 1, different brain regions of interest (ROIs)
have distinct longitudinal changes, where ROI 1 (the left paracentral lobule and
sulcus) undergoes more pronounced shifts than ROI 2 (the right middle frontal
sulcus) within the same observation window. Despite this regional heterogeneity,
generative models treat the whole brain as a unified entity, failing to capture
localized dynamics within the brain.

To address these limitations, we propose a novel data augmentation method
for pMCI data synthesis that explicitly accounts for global differences between
sMCI and pMCI, individual variability, and region-specific dynamics in disease
progression. This is realized by using adversarial attacks [7, 16], which directly
manipulate data points in feature space by iteratively applying small yet strate-
gic perturbations. In our work, these perturbations are designed to gradually
push samples along the disease trajectory by considering the relative positions
between diagnostic groups. Unlike existing works [2, 9, 10, 13, 19, 27] that use
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fixed attack steps and magnitudes, our method dynamically adjusts the number
of attack steps based on each subject’s observation interval. This ensures that
shorter-interval samples receive less perturbation, while longer-interval samples
undergo more transformations, effectively capturing individual heterogeneity in
disease progression. Also, we use ROI-wise learnable attack magnitudes, which
allow the model to capture diverse localized progression patterns across different
brain regions. The biological plausibility of the synthesized samples is further en-
sured by our proposed trajectory consistency constraint, which aligns the attack
pathways with realistic disease trajectories. The augmented pMCI data are then
combined with the given MCI dataset to predict future AD conversion of MCI
patients.

Contributions of our work: 1) We propose a novel end-to-end framework
for synthesizing small-size pMCI data and predicting their AD conversion. 2) By
using adversarial attacks with adaptive steps and ROI-wise trainable perturba-
tion intensities, realistic samples are augmented while preserving individual and
brain regional heterogeneity in neurodegeneration. 3) We introduce trajectory
consistency regularization that ensures the augmented data follow plausible dis-
ease progression. As a result, the synthesized data preserve biological plausibility
and enhance downstream predictive performance, outperforming six augmenta-
tion and generative methods across two AD biomarkers and three classifiers.

2 Method

In this section, we introduce a data augmentation method to address class im-
balance in longitudinal data. Since longitudinal data inherently exhibit temporal
variations in both features and labels over time, leveraging such dynamics is the
key to effective augmentation. Specifically, in this work, our method is applied to
synthesize underrepresented pMCI samples to improve the classification perfor-
mance of sMCI and pMCI patients. Given that pMCI samples undergo temporal
changes with evolving diagnostic labels and ages, our approach incorporates such
variations to generate realistic data that align with plausible disease progression.

2.1 Problem Definition for pMCI and sMCI Classification

Consider a longitudinal sequence of samples X = {Xb, Xf}, where Xb = {xb,n}Nn=1

is a set of brain measurements from N ROIs at baseline time point and Xf =
{xf,n}Nn=1 is a set of follow-up brain measurements. For each time point, the
samples come with age ab and af , where the age difference is less than 3 years
(i.e., af−ab < 3). All baseline samples Xb are diagnosed as MCI, while follow-up
samples Xf are either MCI or AD. If a patient remains MCI at follow-up, the
label Y of X is defined as stable MCI (sMCI, Y = 0), otherwise if the patient
progresses to AD, the label is defined as progressive MCI (pMCI, Y = 1). Our
goal is to classify Y based solely on Xb and ab, without any information from the
follow-up. In other words, a classifier fθ(Xb, ab) predicts whether MCI patients
will convert to AD within 3 years, without knowing the Xf and af .
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Fig. 2: Overview of the model structure. pMCI samples are augmented via adversarial
attacks with ROI-wise trainable intensities Eb,n, Ef,n and adaptive attack steps deter-
mined by individual observation interval M . The pMCI baseline xb,n is perturbed away
from sMCI (i.e., relatively towards AD), while the follow-up xf,n shifts toward sMCI.
A trajectory constraint Rcon allows the attacked data xm

b,n, xm
f,n to follow realistic neu-

rodegeneration patterns. A downstream classifier fθ(·) is trained on the merged dataset
of Xm

b and Xb, which has a balanced data size for sMCI and pMCI classification.

2.2 Adaptive Adversarial Attack for pMCI Data Augmentation

Given a population of X with NpMCI=P and NsMCI=S subjects, one of the
main challenges in AD conversion prediction is sample imbalance (P < S). To
address this, we introduce a data augmentation strategy for pMCI data synthesis
using adversarial attacks. As illustrated in Fig. 2, our method performs bidirec-
tional attacks that simultaneously perturb Xb towards AD and Xf towards MCI
in the feature space. These attacks are ROI and Interval-Adaptive Adversarial
Attack (RIA3), which applies trainable ROI-wise perturbation intensities with
adaptive attack steps adjusted based on individual observation interval.

To account for heterogeneous progression timelines among subjects, the num-
ber of attack steps is dynamically scaled based on the monthly interval M =
(af − ab) × 12. Specifically, iterative attack is applied for ⌈M/2⌉ steps to each
of Xb and Xf , ensuring that shorter-interval samples receive smaller perturba-
tions, while longer-interval samples have larger adjustments to simulate gradual
progression. This design is motivated by the observation that shorter-interval
pMCI samples already share more characteristics with their opposing class (as
illustrated in Fig 1), making them inherently closer to their target distribution.
Consequently, they require fewer attack steps, whereas longer-interval samples
require more perturbations.

For attack steps m = 1, . . . , ⌈M/2⌉, we use monthly-updated ages amb and
amf as conditions to enable a classifier fθ(·) to consider age-dependent variations.
Since the attacks on Xb and Xf are applied in the opposite direction, their ages
are updated accordingly as amb = ab +

m
12 and amf = af − m

12 . Given initial data
X0

b = Xb, X0
f = Xf with ages a0b = ab, a0f = af , perturbed data Xm

b and Xm
f are

obtained by iteratively applying adversarial perturbations δmb and δmf as follows:

Xm+1
b = Xm

b + δmb = Xm
b + |Eb| sign(∇Xm

b
Lce(fθ(X

m
b , am

b ), Y = 0)) and

Xm+1
f = Xm

f + δmf = Xm
f − |Ef | sign(∇Xm

f
Lce(fθ(X

m
f , am

f ), Y = 0)),
(1)
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where Lce is a standard cross-entropy and Eb, Ef ∈ RN are trainable perturbation
magnitudes that adaptively control attack strengths across different ROIs.

Eq. (1) denotes that Xm
b is gradually pushed away from sMCI (Y = 0) by

a perturbation δmb = argmaxδ(Lce(fθ(X
m
b , amb ), Y = 0)) that maximizes a loss.

This iterative attack enhances AD-related features in Xm
b , which are discrim-

inative characteristics that help distinguish sMCI and pMCI. Note that, since
fθ(·) only classifies baseline data and does not explicitly learn AD data (i.e.,
pMCI follow-up), sMCI serves as a target label to perturb pMCI baselines Xb.
In contrast, δmf = argminδ(Lce(fθ(X

m
f , amf ), Y = 0)) guides the classifier to clas-

sify the pMCI follow-up as sMCI by minimizing a loss, making Xm
f exhibit more

MCI-related features. In both cases, the ROI-wise perturbation magnitudes Eb
and Ef are shared across all pMCI subjects and thus trained to capture general
monthly changes between MCI and AD.

2.3 Trajectory-Constrained Adversarial Training

To ensure that the perturbed samples follow the natural disease progression,
we introduce trajectory consistency regularization, which constrains the total
adversarial displacement to align with the real longitudinal trajectories. Let
dM = Xf − Xb denote the true difference between the observed samples Xb

and Xf over M months, and db and df be the adversarial trajectory displace-
ments at baseline and follow-up, respectively. The db and df are defined as

db = X
⌈M

2
⌉

b −Xb =

⌈M
2

⌉∑
m=1

δmb and df = Xf −X
⌈M

2
⌉

f = −
⌈M

2
⌉∑

m=1

δmf , (2)

where X⌈M
2 ⌉

b = Xb+
∑⌈M

2 ⌉
m=1 δ

m
b and X

⌈M
2 ⌉

f = Xf+
∑⌈M

2 ⌉
m=1 δ

m
f according to Eq. (1).

To maintain a smooth transition between X
⌈M

2 ⌉
b and X

⌈M
2 ⌉

f , the total adversarial
displacement approximates the expected disease progression, i.e., db + df ≈ dM ,
using a trajectory consistency regularization, defined as

Rcon(θ, Eb, Ef ) =
1

P

P∑
||dM − (db + df )||l2 =

1

P

P∑
||X⌈M

2
⌉

f −X
⌈M

2
⌉

b ||l2, (3)

where P is the number of pMCI subjects. The Rcon penalizes perturbed data
deviating from the natural trajectory, preventing unrealistic adversarial shifts.

2.4 Training a Classifier for AD Conversion Prediction

Among the perturbed pMCI data Xm
b , we randomly select P ′ = S−P instances

to balance the number of sMCI and pMCI samples. The selected pMCI data
Xm

b and corresponding ages amb are combined with the original data Xb and
ab, forming a dataset of S + P + P ′ samples. This merged dataset is then used
to train a classifier fθ(·), which outputs a prediction Ŷ for sMCI and pMCI
classification. The classifier is trained using the following cross-entropy loss:

Lce(θ, Eb) = − 1

S + P + P ′

S+P+P ′∑
i=1

(
Yi · log Ŷi + (1− Yi) · log(1− Ŷi)

)
. (4)
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Table 1: Demographics of MCI subjects based on Amyloid and FDG SUVR measure-
ments in the ADNI study.

Category Amyloid FDG
sMCI pMCI sMCI pMCI

Number of subjects 631 98 1827 459
Gender (M / F) 362 / 269 53 / 45 1230 / 597 278 / 181
Age (mean ± std) 72.2 ± 7.3 74.1 ± 7.2 75.2 ± 7.6 75.0 ± 7.2
Monthly interval (mean ± std) 24.2 ± 3.7 25.0 ± 3.2 15.8 ± 8.7 20.5 ± 8.7

To ensure realistic transitions in adversarially augmented data, we incorporate
the Rcon in the final training loss L = Lce(θ, Eb)+αRcon(θ, Eb, Ef ) with a hyperpa-
rameter α, such that the network parameters θ and perturbation magnitudes Eb,
Ef are jointly optimized to improve AD conversion prediction in MCI patients.

3 Experiment

3.1 Experimental Setup

Dataset. We conducted experiments on two AD biomarkers: Standardized Up-
take Value Ratio (SUVR) of Amyloid and fluorodeoxyglucose (FDG) provided by
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [22], whose demographics
are reported in Table 1. Both biomarkers were obtained from positron emission
tomography (PET) and measured across 148 ROIs on the Destrieux atlas [4].
All subjects have two time points, and we split 80% of the subjects for training
and the rest 20% for testing, ensuring an equal proportion of sMCI and pMCI.
Setup. As baselines, we used both data augmentation and generative models,
including Logit Uncertainty (LU) [12], SMOTE [1], Mixup [33], CTGAN [31],
TVAE [14], and DDPM [11]. All generative models were trained in a conditional
scheme, using labels, ages, and monthly intervals as conditions. As in ours, all
methods generated P ′ number of pMCI data, which were combined with the
given train set for downstream AD conversion prediction. To evaluate the effec-
tiveness and generalizability of the synthesized data, we used three classifiers:
Multi-Layer Perceptron (MLP) [26], FT-Transformer [8], and NODE [25]. In
all settings, we reported averaged accuracy and F1-score across three replicates
using different parameter initialization. All methods were fine-tuned via a grid
search of learning rates, and their best results were reported.

3.2 Quantitative Results

As shown in Table 2, RIA3 surpassed all baselines on both datasets. Specifically,
on the Amyloid dataset with MLP, our method achieved 87.67% in accuracy and
61.27% in F1-score, surpassing the second-best results by ∼3.7%p and ∼4.5%p,
respectively. Notably, in both datasets, training with synthesized data from gen-
erative models often results in lower F1-scores compared to training without any
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Table 2: Performance comparison of RIA3 and baseline methods.

Methods MLP [26] FT-Transformer [8] NODE [25]
Accuracy F1-score Accuracy F1-score Accuracy F1-score

Amyloid
No Aug. 80.59±1.7 54.11±1.6 80.36±0.8 54.27±1.0 82.19±1.2 54.14±0.7

LU [12] 81.05±6.7 53.99±6.7 83.33±1.4 55.24±1.4 83.10±0.3 54.90±1.1

SMOTE [1] 83.56±2.4 56.78±6.4 87.67±3.8 57.07±3.0 83.56±4.5 52.52±7.0

Mixup [33] 82.65±2.4 55.43±2.7 84.25±1.8 57.73±1.1 83.33±3.9 55.04±3.6

CTGAN [31] 84.02±5.5 53.33±0.0 83.11±2.4 56.04±1.2 83.11±6.9 50.38±3.8

TVAE [14] 80.59±7.9 50.53±3.8 86.30±4.5 60.17±8.2 79.22±10.0 44.53±5.1

DDPM [11] 83.79±4.2 43.83±15.5 89.27±5.0 61.57±5.6 85.84±4.6 40.00±26.5

RIA3 (Ours) 87.67±1.4 61.27±4.9 90.19±0.8 61.98±0.8 88.36±1.6 57.91±1.3

FDG
No Aug. 81.22±0.9 65.97±0.7 83.40±0.8 67.03±1.9 81.22±0.2 64.06±0.8

LU [12] 81.23±0.7 66.50±0.8 82.31±0.8 67.65±0.9 81.00±0.2 66.24±0.2

SMOTE [1] 83.77±2.4 67.10±1.6 84.13±0.9 66.45±1.2 82.02±1.7 63.87±0.8

Mixup [33] 83.12±1.5 67.35±0.7 84.06±0.6 67.94±0.2 82.17±1.4 66.13±0.4

CTGAN [31] 82.31±1.7 62.79±3.0 83.26±1.3 63.62±2.4 75.47±10.8 35.40±31.3

TVAE [14] 80.28±4.0 62.08±3.1 83.55±0.3 62.39±3.1 80.93±3.1 59.11±3.0

DDPM [11] 81.15±2.3 63.02±2.8 83.12±2.0 64.27±2.4 81.59±2.3 60.82±1.8

RIA3 (Ours) 85.01±0.9 68.21±0.5 85.88±0.5 68.72±0.5 84.06±0.8 66.37±0.1

augmentation (i.e., ‘No Aug.’). This suggests that the generative models struggle
to learn a generalized pMCI data distribution, likely due to the small sample size.
As a result, the generated data may lack realism and diversity, causing classifica-
tion bias toward either pMCI or sMCI. In contrast, RIA3 effectively synthesizes
generalized and diverse pMCI samples using strategic adversarial attacks that
directly push data points away from sMCI in feature space, leading to improved
classification performance.

3.3 Model Behavior Analysis and Ablation Study

Effect of Rcon. Fig. 3 demonstrates that the perturbed samples Xm
b and Xm

f

exhibit realistic disease trajectories, seamlessly changing from the baseline Xb

to follow-up Xf . By using Rcon, the most perturbed samples X
⌈M

2 ⌉
f and X

⌈M
2 ⌉

b

shift smoothly, indicating that the learned perturbations are not arbitrary but
rather preserve underlying disease progression characteristics between MCI and
AD. The Rcon not only enhances the reliability of augmented data but also
improves classifier performance, as shown in Table 3. Notably, FT-Transformer
and NODE achieve peak performance at α = 0.1, surpassing the setting without
Rcon (i.e., α = 0) by 4.35%p and 5.48%p in accuracy. MLP performs best at
α = 1, achieving 5.93%p improvement in accuracy over α = 0, highlighting the
importance of Rcon in capturing generalized and discriminative pMCI features.
Discussion on trained Eb, Ef . As shown in Fig. 4, trained perturbation mag-
nitudes |Eb| and |Ef | ∈ RN converged adaptively across different brain regions.
Moreover, the regional changes differ from the baseline and follow-up, indicating
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Fig. 3: Visualization of given data {Xb, Xf} and perturbed data Xm
b and Xm

f along
the disease trajectories of three pMCI subjects. Note that the real data at the far ends
are highly dissimilar, whereas augmented samples in the middle share similar traits.

Table 3: Ablation study on the weight α of Rcon on the Amyloid dataset.

α
MLP [26] FT-Transformer [8] NODE [25]

Accuracy F1-score Accuracy F1-score Accuracy F1-score
0 81.74±0.4 56.05±0.5 85.84±1.6 56.38±0.7 82.88±0.7 56.55±0.5

0.01 87.44±1.4 58.08±3.3 85.62±6.0 60.48±5.4 88.13±1.4 57.24±2.3

0.05 87.22±1.4 59.95±2.2 87.45±3.2 59.61±2.9 85.04±1.2 57.39±1.1

0.1 85.85±1.4 58.72±2.3 90.19±0.8 61.98±0.8 88.36±1.2 57.91±1.3

0.5 87.21±1.0 59.44±2.4 88.59±1.0 58.25±1.9 85.39±1.0 57.88±0.6

1 87.67±1.4 61.27±4.9 86.99±1.2 58.96±0.9 85.84±1.6 59.27±1.6

Fig. 4: Visualization of the trained perturbation magnitudes (a) |Eb| and (b) |Ef |.

that the adversarial perturbations adapt to distinct data distributions observed
at different disease stages. Notably, the trained |Eb| is generally larger than |Ef |,
i.e., the mean of |Eb| and |Ef | are 2.3e−3 (std: 2.1e−3) and 1.1e−3 (std: 8.3e−4),
respectively. These results suggest that the model applies stronger shifts on Xb

to emphasize AD-specific features. Using Xm
b with such pronounced disease-

associated characteristics enhances the difference between sMCI and pMCI, and
thus improves downstream AD conversion prediction.
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4 Conclusion

In this work, we proposed a novel data augmentation method to address the data
imbalance issue in sMCI and pMCI classification. Leveraging adversarial attacks
with subject-wise adaptive step sizes and ROI-wise learnable attack magnitudes,
our method captures heterogeneous neurodegeneration patterns across subjects
and brain regions. Moreover, our proposed trajectory constraint ensures that the
synthesized samples follow natural disease progression, enhancing their biologi-
cal plausibility and downstream predictive performance. Extensive experiments
across multiple datasets and classifiers validate the effectiveness of our method.
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